第五章 网络爬虫之Scrapy框架
● Scrapy爬虫框架
- Scrapy爬虫框架介绍
1、Scrapy安装:cmd-> pip install scrapy
2、Scrapy不是一个函数功能库而是一个爬虫框架。
爬虫框架:
1)爬虫框架是实现爬虫功能的一个软件结构和功能组件集合。
2)爬虫框架是一个半成品,能够帮助用户实现专业网络爬虫。
3、Scrapy爬虫框架结构(5主要模块+2中间键)
数据流的三个路径
路径1:
1)Engine从 Spider处获得爬取请求( Request);
2)Engine将爬取请求转发给 Scheduler,用于调度;
路径2:
3)Engine从 Scheduler处获得下一个要爬取的请求;
4)Engine将爬取请求通过中间件发送给 Downloader;
5)爬取网页后, Downloader形成响应( Response),通过中间件发给 Engine;
6)Engine将收到的响应通过中间件发送给 Spider处理;
路径3:
7)Spider处理响应后产生爬取项(scraped Item)和新的爬取请求( Requests)给Engine;
8)Engine将爬取项发送给Item Pipeline(框架出口);
9)Engine将爬取请求发送给Scheduler。
数据流的出入口
Engine控制各模块数据流,不间断从 Scheduler处获得爬取请求,直至请求为空。
框架入口: Spider的初始爬取请求
框架出口: Item Pipeline
ENGINE、SCHEDULER、DOWNLOAD模块功能已有实现,SPIDERS、ITEM PIPELINES模块有用户编写(配置)。 - Scrapy爬虫框架解析
1、Engine模块(不需要用户修改)—核心
1)控制所有模块之间的数据流;
2)根据条件触发事件;
2、Downloader模块(不需要用户修改:根据请求下载网页;
3、Scheduler模块(不需要用户修改:对所有爬取请求进行调度管理;
4、Spider模块(需用户编写配置代码)
1)解析Downloader返回的响应(Response);
2)产生爬取项(scraped item);
3)产生额外的爬取请求(Request);
5、Item Pipelines模块(需用户编写配置代码)
1)以流水线方式处理 Spider产生的抓取项;
2)由一组操作顺序组成,类似流水线,每个操作是一个Item Pipeline类型;
3)可能操作包括:清理、检验和查重爬取项中的HTML数据、将数据存储到数据库;
6、Downloader Middleware中间键(用户可编写配置代码)
目的:实施 Engine、Scheduler和Downloader间进用户可配置的控制;
功能:修改、丟弃、新增请求或响应;
7)Spider middleware中间键(用户可编写配置代码)
目的:对请求和爬取项的再处理;
功能:修改、丢弃、新增请求或爬取项。 - requests库和Scrapy爬虫比较
1、相同点
1)两者都可以进行页面请求和爬取, Python爬虫的两个重要技术路线;
2)两者可用性都好,文档丰富,入门简单;
3)两者都没有处理js、提交表单、应对验证码等功能(可扩展)。
2、不同点
3、开发爬虫技术路线选择
1)非常小的需求, requests库。
2)不太小的需求, Scrapy框架。
3)定制程度很高的需求(不考虑规模),自搭框架,requests>Scrapy。 - Scrapy爬虫常用命令
1、Scrapy命令行:Scrapy是为持续运行设计的专业爬虫框架,提供操作的Scrap命令行,打开命令行操作:CMD窗口->scrapy -h。
2、Scrapy命令行格式
3、Scrapy常用命令
最常用:startproject、genspider、crawl
4、为什么 Scrapy采用命令行创建和运行爬虫?
1)命令行(不是图形界面)更容易自动化,适合脚本控制;
2)本质上,Scrapy是给程序员用的,功能(而不是界面)更重要。
● Scrapy爬虫基本使用
- Scrapy爬虫案列讲解
应用Scrapy爬虫框架主要是编写配置型代码
1、产生步骤
步骤1:建立一个Scrapy爬虫工程
选取一个目录(F:\pycodes\),然后执行如下命令:
F:\pycodes>scrapy startprojrct python123demo
Scrapy 1.6.0 - no active project
Unknown command: startprojrct
Use "scrapy" to see available commands
F:\pycodes>scrapy startproject python123demo
New Scrapy project 'python123demo', using template directory 'c:\users\hp\appdata\local\programs\python\python37-32\lib\site-packages\scrapy\templates\project', created in:
F:\pycodes\python123demo
You can start your first spider with:
cd python123demo
scrapy genspider example example.com
步骤2:在工程中产生一个Scrapy爬虫
进入工程目录(F:\pycodes\python123demo),然后执行如下命令:
F:\pycodes\python123demo>scrapy genspider demo python123.io
Spider 'demo' already exists in module:
python123demo.spiders.demo
该命令作用:
1)生成一个名称为demo的spider;
2)在spiders目录下增加代码文件 demo.py;
该命令仅用于生成 demo.py,该文件也可以手工生成。
步骤3:配置产生的spider爬虫
配置:1)初始URL地址;2)获取页面后的解析方式
import scrapy
class DemoSpider(scrapy.Spider):
name = "demo"
#allowed_domains = ["python123.io"]
start_urls = ['https://python123.io/ws/demo.html']
def parse(self, response):
fname = response.url.split('/')[-1]
with open(fname, 'wb') as f:
f.write(response.body)
self.log('Saved file %s.' % name)
步骤4:运行爬虫,获取网页
在命令行下,执行如下命令:demo爬虫被执行,捕获页面存储在demo.html
F:\pycodes\python123demo>scrapy crawl demo
2、生成的工程目录结构
python123demo/ --------------→外层目录
scrap.cfg --------→部署 Scrapy爬虫的配置文件(将爬虫放在特定的服务器,并在服务器配置相关的操作接口)
python 123demo/--------→Scrapy框架的用户自定义 Python代码
_init_.py -------→初始化脚本
items.py -------→Items代码模板(继承类)(一般不需要编写)
middlewares.py----→Middlewares代码模板(继承类)(扩展middlewares功能时编写)
pipelines.py -----→pipelines代码模板(继承类)
settings.py ------→scrap爬虫的配置文件(优化爬虫功能,需修改对应的配置项)
spiders/ -------→Spiders代码模板目录(继承类)(存放工程爬虫,要求其中爬虫符合爬虫模板的约束)
_init_.py —→初始文件,无需修改
_pycache_.py →缓存目录,无需修改
(内层目录结构 用户自定义的spider代码增加在此处)
3、工程爬虫模板
1)类必须继承于scrapy.Spider子类;
2)name为当前爬虫名;
3)allowed_domains为提交给命令行的域名,爬虫在爬取网站只能爬取这个域名以下的相关链接;
4) start_urls以列表形式包含的一个或多个url,为scrapy框架最初爬取网址;
5)parse()用于处理响应,解析内容形成字典,发现新的URL爬取请求。
- yield关键字的使用
1、yield←→ 生成器
1)生成器是一个不断产生值的函数;
2)包含yield语句的函数是一个生成器;
3)生成器每次产生一个值(yield语句),函数被冻结,被唤醒后再产生一个值。
2、生成器相比一次列出所有内容的优势:
1)更节省存储空间;
2)响应更迅速;
3)使用更灵活。 - Scrapy爬虫基本使用
1、Scrapy爬虫的使用步骤
步骤1:创建一个工程和Spider模板;
步骤2:编写Spider;
步骤3:编写Item Pipeline;
步骤4:优化配置策略。
2、Scrapy爬虫的数据类型
Request类:class scrapy.http.Request()
Request类介绍:
1)Request对象表示一个HTTP请求;
2)由Spider生成,由Downloader执行。
Request类方法Response类:class scrapy.http.Response()
Response类介绍:
1)Response对象表示一个HTTP响应;
2)由Downloader生成,由Spider处理。
Response类方法
Item类:class scrapy.item.Item()
Item类介绍:
1)Item对象表示一个从HTML页面中提取的信息内容;
2)由Spider生成,由Item Pipeline处理;
3)Item类似字典类型,可以按照字典类型操作。
3、Scrapy爬虫支持多种HTML信息提取方法:
• Beautiful Soup
• lxml
• re
• XPath Selector
• CSS Selector
CSS Selector的基本使用
1)格式:
2)CSS Selector由W3C组织维护并规范
● Scrapy爬虫实例
- 股票数据 Scrape爬中实例介绍
1、功能描述
目标:获取上交所和深交所所有股票的名称和交易信息
输出:保存到文件中
技术路线:scrapy
2、数据网站的确定
获取股票列表:
东方财富网:http://quote.eastmoney.com/stocklist.html
获取个股信息:
百度股票:https://gupiao.baidu.com/stock/
单个股票:https://gupiao.baidu.com/stock/sz002439.html
3、程序框架:编写spider处理链接爬取和页面解析,编写pipelines处理信息存储。 - “股票数据 Scrap爬虫实例编写(仅供参考)
步骤
步骤1:建立工程和Spider模板
1)>scrapy startproject BaiduStocks
2)>cd BaiduStocks
3)>scrapy genspider stocks baidu.com
4)进一步修改spiders/stocks.py文件
步骤2:编写Spider
1)配置stocks.py文件
2)对返回页面的处理
3)修改对新增URL爬取请求的处理
stocks.py文件源代码
import scrapy
import re
class StocksSpider(scrapy.Spider):
name = "stocks"
start_urls = ['https://quote.eastmoney.com/stocklist.html']
def parse(self, response):
for href in response.css('a::attr(href)').extract():
try:
stock = re.findall(r"[s][hz]\d{6}", href)[0]
url = 'https://gupiao.baidu.com/stock/' + stock + '.html'
yield scrapy.Request(url, callback=self.parse_stock)
except:
continue
def parse_stock(self, response):
infoDict = {}
stockInfo = response.css('.stock-bets')
name = stockInfo.css('.bets-name').extract()[0]
keyList = stockInfo.css('dt').extract()
valueList = stockInfo.css('dd').extract()
for i in range(len(keyList)):
key = re.findall(r'>.*</dt>', keyList[i])[0][1:-5]
try:
val = re.findall(r'\d+\.?.*</dd>', valueList[i])[0][0:-5]
except:
val = '--'
infoDict[key]=val
infoDict.update(
{'股票名称': re.findall('\s.*\(',name)[0].split()[0] + \
re.findall('\>.*\<', name)[0][1:-1]})
yield infoDict
步骤3:编写ITEM Pipelines
1)配置pipelines.py文件
pipelines.py文件源代码
class BaidustocksPipeline(object):
def process_item(self, item, spider):
return item
class BaidustocksInfoPipeline(object):
def open_spider(self, spider):
self.f = open('BaiduStockInfo.txt', 'w')
def close_spider(self, spider):
self.f.close()
def process_item(self, item, spider):
try:
line = str(dict(item)) + '\n'
self.f.write(line)
except:
pass
return item
2)定义对爬取项(Scraped Item)的处理类
3)配置ITEM_PIPELINES选项
settings.py文件中被修改的区域
ITEM_PIPELINES = {
'BaiduStocks.pipelines.BaidustocksInfoPipeline': 300,
}
步骤4:程序的执行:>scrapy crawl stocks
- “股票数据 Scrap爬虫实例优化
配置并发连接选项——settings.py文件