二、图像到图像的映射
2.1、单应性变换
单应性变化:将一个平面点映射到另外一个平面点的二维投影矩阵
2.1.1直接线性变化算法
完全射影变换具有8个自由度,因此需要有四个或更多的对应点对,来计算单应性矩阵H,由于四个对应点对能有8个方程,解9个未知数,因此需要利用SVD奇异值分解来求得最小二乘解。最小二乘解为矩阵SVD分解后所得矩阵V最后一行。
2.1.2 仿射变化
图像的仿射变化主要是实现图像的扭曲和平移操作,仿射变化的变化矩阵有6个自由度,因此需要3组对应点对来求出变化矩阵。图像的仿射扭曲可以利用 SciPy中的ndimage来实现:
transformed_im = ndimage.affine_transform(im,A,b,size)
#A表示仿射变化矩阵,b为平移向量
仿射变换只能支持精确匹配三个对应点对,因此若超过3对对应点对需要匹配时则可以考虑将图像先划分为多个三角形(狄洛克三角剖分法),再利用仿射变化进行精确的匹配。
2.1.3 RANSAC
随机一致性采样:
数据中包含正确的点和噪声点,合理的模型应该能够在描述正确数据点的同时摒弃噪声点,可以用来求解单应性矩阵。
三、照相机模型与增强现实
在三维图像到平面图形的投影需要用到照相机产生图像过程的投影特性。
四、图像聚类
4.1、K-means聚类
使得类内方差最小:V = min(sum(sum(xj - ui)**2))
- 在数据中随机选取数个类中心
- 将每个数据点都归入离自己最近的类中心所属的类Ci
- 对所有属于该类的数据点都取平均,将平均值作为新的类中心
- 重复第二和第三步直到收敛