100-Days-Of-ML-Code
中文版《机器学习100天》
GitHub :https://github.com/MLEveryday/100-Days-Of-ML-Code
数据集 | 社交网络
部分数据集如下图所示:
该数据集包含了社交网络中用户的信息。这些信息涉及用户ID,性别,年龄以及预估薪资。一家汽车公司刚刚推出了他们新型的豪华SUV,我们尝试预测哪些用户会购买这种全新SUV。并且在最后一列用来表示用户是否购买。我们将建立一种模型来预测用户是否购买这种SUV,该模型基于两个变量,分别是年龄和预计薪资。因此我们的特征矩阵将是这两列。我们尝试寻找用户年龄与预估薪资之间的某种相关性,以及Ta是否购买SUV的决定。
(1)导入库
import pandas as pd
(2)导入数据集
dataset = pd.read_csv('D:/PycharmProjects/DataSet/Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
(3)将数据拆分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train