《机器学习100天》学习笔记——Day 11_k-NN(k近邻法)

这篇博客记录了使用k-近邻法(k-NN)进行机器学习的实践,目标是预测社交网络用户是否会购买一款新推出的豪华SUV。数据集中包含用户ID、性别、年龄和预估薪资,模型基于年龄和预估薪资预测购买行为。文章涵盖了数据导入、拆分训练测试集、特征缩放、k-NN训练、测试集预测以及评估指标如混淆矩阵、精确率、召回率和F1值。
摘要由CSDN通过智能技术生成

100-Days-Of-ML-Code
中文版《机器学习100天》
GitHub :https://github.com/MLEveryday/100-Days-Of-ML-Code

数据集 | 社交网络
部分数据集如下图所示:
在这里插入图片描述

该数据集包含了社交网络中用户的信息。这些信息涉及用户ID,性别,年龄以及预估薪资。一家汽车公司刚刚推出了他们新型的豪华SUV,我们尝试预测哪些用户会购买这种全新SUV。并且在最后一列用来表示用户是否购买。我们将建立一种模型来预测用户是否购买这种SUV该模型基于两个变量,分别是年龄和预计薪资。因此我们的特征矩阵将是这两列。我们尝试寻找用户年龄与预估薪资之间的某种相关性,以及Ta是否购买SUV的决定。

(1)导入库

import pandas as pd

(2)导入数据集

dataset = pd.read_csv('D:/PycharmProjects/DataSet/Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

(3)将数据拆分为训练集和测试集

from sklearn.model_selection import train_test_split
X_train, X_test, y_train
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值