Python量化- Black-Litterman 模型

本文介绍了Black-Litterman模型在资产配置中的应用,该模型结合市场预期和投资者观点,通过贝叶斯方法优化投资组合。文章详细阐述了模型的计算过程,包括置信度矩阵、市场风险厌恶程度的确定以及优化投资组合的步骤。最后,通过实例展示了Black-Litterman模型如何提高投资组合的绩效和降低风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

Black-Litterman 模型由 Fischer Black 和 Robert Litterman 于 1992 年开发,采用贝叶斯方法进行资产配置。该模型通过结合先前的回报估计(可以从多个来源得出)并结合投资者对未来回报的独特预期来优化分配权重。

   

Black-Litterman 模型的核心是计算先前对回报的估计以及投资者对每项资产持有的特定观点的加权平均值。权重取决于投资者对其每种观点的置信水平,这允许更个性化的投资策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Omer_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值