1.最大堆的创建
typedef struct HeapStruct *MaxHeap;
struct HeapStruct
{
ElementType *Elements;/*存储堆元素的数组*/
int size;/*堆的当前元素的个数*/
int capacity;/*堆的最大容量*/
};
MaxHeap Create(int MaxSize)
{
H->Elements=malloc((MaxSize+1)*sizeof(ElementType));
H->Size=0;
H->Capacity=MaxSize;
H->Elements[0]=MaxData;//哨兵 避免在插入时额外进行判断损失性能
return H;
}
2.最大堆插入
void Insert(MaxHeap H,ElementType item)
{
/*将元素item插入到最大堆H,其中H->Elments[0]定义为哨兵*/
int i;
if(IsFull(H)
{
printf("full");
return;
}
i==++H->Size;
/*i指向插入后堆最后一个元素的位置;*/
for(;H->Elements[i/2]<item;i/=2)
H->Element[i]=H->Elements[i/2];/*向下过滤结点*/
H->Elements[i]=item;
}
3.最大堆删除
去除最大值元素,同时删除堆的一个结点
ElementTypeDeleteMax(MaxHeap H)
{
/*从最大堆H中取出键值为最大的元素,并删除一个结点*/
int Parent,Child;
ElementType MaxItem,temp;
if(IsEmpty(H))
{
printf("Empty");
return;
}
MaxItem=H->Elements[1];/*q取出根节点最大值*/
temp=H->Elements[H->Size--];
for(Parent=1;Parent*2<=H->Size;Parent=Child;Parent=Child)
{
Child=Parent*2;
if((Child!=H->Size)&&(H->Element[Child]<H->Elements[Child+1])
Child++;
if(temp>=H->Elements[Child])break;
else
H->Elements[Parent]=H->Elements[Child];;
}
H->Elements[Parent]=temp;
return MaxItem;
}
4.最大堆的建立
建立最大堆:将已经存在的N个元素按照最大堆的要求存放在一个一维数组里。
Tip1:通过插入操作,将N个元素一个个相继插入到一个初始为空的堆中,其时间代价最大为o(NlogN)
Method 2:在线性时间复杂度下建立最大堆。
- 将N个元素按输入顺序存入,先满足完全二叉树的结构特性。
- 调整各节点的位置,以满足最大堆的有序特性。