数据结构--堆

1.最大堆的创建

typedef struct HeapStruct *MaxHeap;
struct HeapStruct
{
	ElementType *Elements;/*存储堆元素的数组*/
	int size;/*堆的当前元素的个数*/
	int capacity;/*堆的最大容量*/
};
MaxHeap Create(int MaxSize)
{
	H->Elements=malloc((MaxSize+1)*sizeof(ElementType));
	H->Size=0;
	H->Capacity=MaxSize;
	H->Elements[0]=MaxData;//哨兵 避免在插入时额外进行判断损失性能
	return H;
}

2.最大堆插入

void Insert(MaxHeap H,ElementType item)
{
	/*将元素item插入到最大堆H,其中H->Elments[0]定义为哨兵*/
	int i;
	if(IsFull(H)
	{
	printf("full");
	return;
	}
	i==++H->Size;
	/*i指向插入后堆最后一个元素的位置;*/
	for(;H->Elements[i/2]<item;i/=2)
		H->Element[i]=H->Elements[i/2];/*向下过滤结点*/
	H->Elements[i]=item;
}

3.最大堆删除
去除最大值元素,同时删除堆的一个结点

ElementTypeDeleteMax(MaxHeap H)
{
	/*从最大堆H中取出键值为最大的元素,并删除一个结点*/
	int Parent,Child;
	ElementType MaxItem,temp;
	if(IsEmpty(H))
	{
		printf("Empty");
		return;
	}
	MaxItem=H->Elements[1];/*q取出根节点最大值*/
	temp=H->Elements[H->Size--];
	for(Parent=1;Parent*2<=H->Size;Parent=Child;Parent=Child)
	{
		Child=Parent*2;
		if((Child!=H->Size)&&(H->Element[Child]<H->Elements[Child+1])
		Child++;
		if(temp>=H->Elements[Child])break;
		else
		H->Elements[Parent]=H->Elements[Child];;
	}
	H->Elements[Parent]=temp;
	return MaxItem;
	
}

4.最大堆的建立
建立最大堆:将已经存在的N个元素按照最大堆的要求存放在一个一维数组里。
Tip1:通过插入操作,将N个元素一个个相继插入到一个初始为空的堆中,其时间代价最大为o(NlogN)
Method 2:在线性时间复杂度下建立最大堆。

  1. 将N个元素按输入顺序存入,先满足完全二叉树的结构特性。
  2. 调整各节点的位置,以满足最大堆的有序特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不停---

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值