粒子群算法的寻优算法

一、粒子算法的概述
粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。试想一下枚举法,假设问题的解空间很小,比如一个函数 y = x^2 ,解空间在[-1,1],现在求这个函数的最小值,我们完全可以使用枚举法,比如在这里,在解空间[-1,1]上,取1000等分,也就是步长为0.002,生成1000个x值,然后代入函数中,找到这1000个最小的y就可以了。然而实际情况不是这样的,比如为什么选1000等分,不是1w,10w等分,很显然等分的越大,计算量也就越大,带来的解当然也就越精确,那么实际问题中如何去平衡这两点呢?也就是既要计算量小(速度快),也要准确(精度高),这就是智能算法的来源了,一般的智能算法基本上都是这样的,在很大的搜索空间上,即保证了速度快,也能比较好的找到最优解。
再来看看粒子群算法(也称PSO算法),也是一种进化算法,模拟生物群体的觅食行为,是一种群体智能算法,类似的算法想遗传算法,模拟退火算法等等。PSO是通过当前已知种群寻找到的所有解来决定新的解的寻找方向,也就是新解的生成方式依赖于这些种群历史上寻找的所有解。
开始随机生成一堆种群,那么这些种群之间的每个个体可以相互交流,比如下一时刻,A告诉B说我的解比你好,那么B就往A那个地方飞,也就是B的解朝着A的解方向变化,当然所有粒子间都这样操作,想想一旦粒子群中间有一个粒子找到了一个最优解,是不是所有的粒子会一窝蜂朝着这个方向而去了,而在这个去的过程中,万一某个粒子找到了一个更好的解,那它还会走吗?不会了,它就告诉剩下的所有粒子说我的解更好呀,大家快来呀(很无私的),然后所有粒子又一窝蜂的照着这个粒子方向前进,当然在这个前进的过程中可能又会产生新的解,就这样一步步的迭代,最终慢慢的趋近于一个最优解,这个解是不是全局最优解,不知道,可能是,也可能不是,取决于原始问题的复杂程度,也取决于粒子前进的多少等等。
粒子群算法相对于其他算法来说还是有很多优点的,典型的就是计算速度很快,在每次迭代时,所有粒子同时迭代,是一种并行计算方式,而且粒子的更新方式简单,朝着一个优秀解方向更新。这个优秀解包括两个部分:
1)一个是朝着自己在迭代的历史上找到的个体最优解gbest前进
2)一个是朝着群体在得带历史上找到的全体最优解zbest前进
现在还有一个问题就是每次迭代的时候更新多少呢?也就是自变量的增加步长了,我们用一个速度量V来表示,也就是每个粒子的更新速度了,公式化的表示就是这样的:
在这里插入图片描述
从上面的速度V的更新而已看到,c1那项就是朝着自己的最优解前进,c2那一项就是朝着全局最优解那前进。用简单的图表示如下:
在这里插入图片描述

二、粒子算法的步骤
粒子群的核心部分就是上面说到的那两个公式,一个是速度的更新方式,另一个是位置的更新方式,重点还是速度的更新方式;
总结来说,粒子群的算法步骤如下:

初始化粒子群个体;
计算每个个体的适应度值(函数值)作为评判好坏的标准;
找到每个个体自己在所有迭代过程中的最优解Pbest;
找到所有个体在所有迭代过程中的最优解Zbest;
根据速度公式更新速度;
根据位置公式更新位置;
重复步骤二直至迭代次数结束
这里有几个参数需要说一下,

关于速度V,限制速度的范围,比如需要设置一个最大速度,防止更新过快;
关于c1与c2,这两个参数代表加速因子,决定跟随历史优秀解的能力;
关于粒子数与迭代次数,粒子数一般50-100,迭代次数视问题而定了;、

三、代码实现
%% 清空环境
clc
clear
%% 参数初始化
%粒子群算法中的三个参数
c1 = 1.49445;%加速因子
c11=c1;
c2 = 1.49445;
c22=c2;
w=0.8 %惯性权重
%w1=0.9 %希望改变的权重
%w0=w;
maxgen=1000; % 进化次s数
sizepop=200; %种群规模1

Vmax=1;       %限制速度围
Vmin=-1;     
popmax=5;    %变量取值范围
popmin=-5;
dim=10;       %适应度函数维数1

func=1;       %选择待优化的函数,1为Rastrigin,2为Schaffer,3为Griewank
%Drawfunc(func);%画出待优化的函数,只画出二维情况作为可视化输出

%% 产生初始粒子和速度
for i=1:sizepop
%随机产生一个种群
pop(i,:)=popmax*rands(1,dim);    %初始种群
V(i,:)=Vmax*rands(1,dim);             %初始化速度
                                 %计算适应度
fitness(i)=fun(pop(i,:),func);   %粒子的适应度
end

%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
gbest=pop(bestindex,:);   %全局最佳
pbest=pop;                %个体最佳
fitnesspbest=fitness;     %个体最佳适应度值
fitnessgbest=bestfitness; %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen  
fprintf('第%d代,',i);
fprintf('最优适应度%f\n',fitnessgbest);
%w=w+(w1-w0)/maxgen;
c1=c1+(1-c11)/maxgen;
%c2=c2+(2-c22)/maxgen;
for j=1:sizepop
    
    %速度更新
    V(j,:) = w*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:)); %根据个体最优pbest和群体最优gbest计算下一时刻速度
    V(j,find(V(j,:)>Vmax))=Vmax;   %限制速度不能太大
    V(j,find(V(j,:)<Vmin))=Vmin;
    
    %种群更新
    pop(j,:)=pop(j,:)+0.5*V(j,:);       %位置更新
    pop(j,find(pop(j,:)>popmax))=popmax;%坐标不能超出范围
    pop(j,find(pop(j,:)<popmin))=popmin;
    
    if rand>0.98                         %加入变异种子,用于跳出局部最优值
        pop(j,:)=rands(1,dim);
    end
    
    %更新第j个粒子的适应度值
    fitness(j)=fun(pop(j,:),func); 

end

for j=1:sizepop
    
    %个体最优更新
    if fitness(j) < fitnesspbest(j)
        pbest(j,:) = pop(j,:);
        fitnesspbest(j) = fitness(j);
    end
    
    %群体最优更新
    if fitness(j) < fitnessgbest
        gbest = pop(j,:);
        fitnessgbest = fitness(j);
    end
end 
yy(i)=fitnessgbest;    
    
end
%% 结果分析
figure;
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);

四、实验数据与分析
控制参数
在这里插入图片描述

在这里插入图片描述

A组 (w惯性权重 c1 c2加速因子)
1、改变w的值

w=0.8 w1=0.99(平均最佳适应度为4.39)在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

w=0.8 w1=0.6(最佳适应度为1.79)在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
w=0.8 w1=0.4(平均最佳适应度为2.59)
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

*w=0.8 w1=0.2(平均最佳适应度为2.3)
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

w=0.6 w1=0.2(平均最佳适应度为0.2)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述

由上述图片数据分析可得在1000次迭代中 w的变化0.8-0.6 优于 0.8-0.4和0.8-0.2 可知一开始惯性权重过大的话会使结果较容易陷入局部最优 而0.6-0.2的最佳适应度只有0.2 说明这个是该条件下的相对最优解 可知 在迭代次数多的后半程惯性权重小 依赖于c1 c2的话对得到最优解有很大的帮助。

2、改变c1的值
c1是1.49-1(平均最佳适应度为3.9)在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

c1是1.49-1.2(平均最佳适应度为1.79)
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

c1是1.49-2(平均最佳适应度为1.2)
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

由上述图片和数据可知 当c1 逐渐变小时 若变得太小容易陷入局部最优 而当c1 逐渐变大时 个人最优的占比变大时 得出的结果比较好
3、改变c2的值
c2是1.49-2(平均最佳适应度为2.2)
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

c2是1.49-1.8(平均最佳适应度为4.2)
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

c2是1.49-1(平均最佳适应度为1.2)
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

由上述数据可得 当c2增加时 明显的看出实验结果容易陷入局部最优,而当c2 减小时也就是迭代次数越大时群体的影响越小时得出的结果越理想。

综上所述,对于c1要随着迭代次数变小,c2要随着迭代次数变大,因为c1是个人最优在前期的时候个人最优要优于群体最优,而在后期c2是群体最优要由于个人最优,由此产生的想法,当c1 2-1和c2 1-2;
在这里插入图片描述

发现没有屁用。

B组 (sizepop种群规模 dim适应度函数维数)
1、改变sizepop的值

s=50(平均最佳适应度为3.8)
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

s=100(平均最佳适应度为0.66)
在这里插入图片描述在这里插入图片描述在这里插入图片描述

s=200(平均最佳适应度为3)
在这里插入图片描述在这里插入图片描述在这里插入图片描述

s=300(平均最佳适应度为1.7)
在这里插入图片描述在这里插入图片描述在这里插入图片描述

s=500(平均最佳适应度为1)
在这里插入图片描述在这里插入图片描述

通过上述图片和数据分析可知 种群规模过小时,结果容易陷入局部最优,种群多样性的减少对于种群寻找最优解有着一定影响。当种群规模过大时, 虽然最终得出的结果情况较好,但与耗费的资源不成比例。所以种群规模还是适当的好,大概在200-300。

2、改变dim的值

dim=2(平均最佳适应度为0)
在这里插入图片描述在这里插入图片描述在这里插入图片描述

dim=6(平均最佳适应度为0.33)
在这里插入图片描述在这里插入图片描述在这里插入图片描述

dim=10(平均最佳适应度为4)
在这里插入图片描述在这里插入图片描述在这里插入图片描述

dim=15(平均最佳适应度为7.8)
在这里插入图片描述在这里插入图片描述在这里插入图片描述

由上述图片和数据可知当维度越小的时候越容易得出全局最优解 越大的时候则相反

  • 8
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值