本题则是采用一般的dp。
设dp[i]为我们最长子序列在扫描到下标为i的数字的时候,最长子序列的长度。
设nums[j]和nums[i]其中,nums[j]只在前i个下标的数字中进行扫描。当扫描出来有满足nums[j]<nums[i]的情况也就是发现了新的满足条件的数字。
我们开始初始化dp数组里面的值为1,每当发现一个满足条件的数字,就+1。然后针对这种情况,计算出每一次满足条件的dp[j]+1的最大值,存储进dp[i]
所以最后的状态转移可以理解为dp[i] = Math.max(dp[i],dp[j])
class Solution {
public int lengthOfLIS(int[] nums) {
int dp[] = new int[nums.length];
Arrays.fill(dp,1);
int max = 0;
for(int i = 0 ; i<nums.length; i++){
for(int j = 0 ; j<i ; j++){
if(nums[j]<nums[i]) dp[i] = Math.max(dp[i],dp[j]+1);
}
max = Math.max(dp[i],max);
}
return max;
}
}