(Java)leetcode 300. 最长上升子序列

在这里插入图片描述

本题则是采用一般的dp。

设dp[i]为我们最长子序列在扫描到下标为i的数字的时候,最长子序列的长度。

设nums[j]和nums[i]其中,nums[j]只在前i个下标的数字中进行扫描。当扫描出来有满足nums[j]<nums[i]的情况也就是发现了新的满足条件的数字。

我们开始初始化dp数组里面的值为1,每当发现一个满足条件的数字,就+1。然后针对这种情况,计算出每一次满足条件的dp[j]+1的最大值,存储进dp[i]

所以最后的状态转移可以理解为dp[i] = Math.max(dp[i],dp[j])

class Solution {
    public int lengthOfLIS(int[] nums) {
        int dp[] = new int[nums.length];
        Arrays.fill(dp,1);
        int max = 0;
        for(int i = 0 ; i<nums.length; i++){
            for(int j = 0 ; j<i ; j++){
                if(nums[j]<nums[i]) dp[i] = Math.max(dp[i],dp[j]+1);
            }
            max = Math.max(dp[i],max);
        }
        
        return max; 
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值