单调栈基础

单调栈分为单调递增栈和单调递减栈,顾名思义,就是栈中的元素是单调的。如单调递增栈,栈顶是最大的,那么当遇到一个比当前数大的数,那么栈顶元素就是第一个比当前小的数,并将当前元素入韩;当遇到一个比栈顶小的数,就会把栈中元素依次出栈,直到剩下比当前元素小的那个数。那么,剩下的这个数,就是之前遍历过的数中,第一个比当前数小的数。也就是说,单调递增(递减)栈的作用是找到前一个比当前元素小(大)的元素。下图是单调递增栈的示意图。

Alt
当熟悉了单调栈这个数据结构后,再面对很多以前觉得棘手的题,就会觉得豁然开朗,思路清晰。

739. 每日温度
1019. 链表中的下一个更大节点
这两题都是很直接的单调栈,但在没有习惯前往往会用用双指针来做,因为更直观。

42.接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
Alt示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5]
输出:9

这题有多种解法,其中最便捷的是双指针的解法,但比较难想到。而单调栈的解法则比较直观。因为,显然,雨水能接到的前提有两个,一个是高度差,另一个是两侧都有砖块。首先要明确一点,由于木桶效应,当出现高低差时,那接水的上限就取决于矮的那一侧。假设我们按遍历的顺序来思考,也就是从左往右。当右侧与左侧有高度差时,只要左侧有比该低点高的砖块就能够蓄水。当右侧遇到比左侧最高的砖块还高的砖块时,由于木桶效应,蓄水上限已经由左侧这个砖块决定了,即当前这一部分的蓄水值是确定了的。
因此,当我们遍历到右侧,有高度差时,需要找到的需要找到的是左侧第一个比当前高的块,因为这时,木桶中的短板为当前块,也就是不能更高的部分时不能确定是否可以蓄水的,但与当前块大小相同的块之间蓄水状态是确定的。而要找左侧第一个比当前块高,也就是第一个比当前大的数,则可以用到单调递减栈。

class Solution:
    def trap(self, height: List[int]) -> int:
        stack = []
        water = 0
        for i in range(len(height)):
            while stack and height[i] > height[stack[-1]]:
            #当前块大于栈顶意味着有高度差
                top = stack.pop()
                if not stack:  #说明左侧没有砖块了,不能蓄水
                    break
                left = stack[-1]  
                #栈不为空说明左侧有>=栈顶元素的数
                h = min(height[left], height[i]) - height[top]
                #当左侧元素>栈顶时,h值>0;
                #当左侧元素==栈顶时,h=0,并会继续while循环,直到遇到>栈顶的元素以确定蓄水或栈为空
                w = (i - left - 1)
                water += w*h
            stack.append(i)
        return water

84. 柱状图中最大的矩形

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
示例 1:
Alt
输入:heights = [2,1,5,6,2,3]
输出:10
解释:最大的矩形为图中红色区域,面积为 10
示例 2:
Alt
输入: heights = [2,4]
输出: 4

暴力的解法有两种能够比较直观地想到,一种是枚举以每一条边为左侧端点所能生成的最大矩形,另一种枚举以每个柱为矩形的高度所能生成的最大矩形。这两种方法的时间复杂度都是 O ( n 2 ) O(n^2) O(n2),在这一题上会超时。

其中,第二种暴力法的本质,其实是希望找到每个柱子左右两侧第一个比它矮的柱子。而用遍历的方法太耗时间。这是,回想一下,找一个数组中,第一个比某个数小的数,可以用到一个一次遍历的方法,也就是单调栈。单调递增栈的作用是找到前一个比当前元素小的元素。而本题需要找到左右两侧,那用两次单调栈就可以了,复杂度是 O ( n ) + O ( n ) = O ( n ) O(n) + O(n) = O(n) O(n)+O(n)=O(n)

85. 最大矩形
和上一题本质上一样的,但需要加一点处理,适合巩固与拓展。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
单调栈是一种常见的数据结构,在解决一些特定问题时非常有用。它可以用来求解一些范围内的最大值、最小值、最长连续递增子序列等问题。下面是一个简单的 Python 实现: ``` class MonotonicStack: def __init__(self): self.stack = [] def push(self, val): while self.stack and self.stack[-1] < val: self.stack.pop() self.stack.append(val) def pop(self): self.stack.pop() def top(self): return self.stack[-1] def is_empty(self): return len(self.stack) == 0 ``` 这个单调栈实现了四个基本操作: - push(val):将元素 val 压入中。在压入之前,如果顶元素比 val 小,则弹出顶元素,直到顶元素比 val 大或为空,然后将 val 压入中。 - pop():弹出顶元素。 - top():返回顶元素。 - is_empty():判断是否为空。 使用单调栈的时候,需要根据具体问题来实现 push 操作。下面是一个例子,求解一个数组中每个元素右边第一个比它大的数: ``` def next_larger(nums): n = len(nums) res = [-1] * n stack = MonotonicStack() for i in range(n): while not stack.is_empty() and nums[stack.top()] < nums[i]: res[stack.top()] = nums[i] stack.pop() stack.push(i) return res ``` 在这个例子中,我们维护了一个单调递减的,每次遇到一个比顶元素大的数,就将顶元素弹出,并将顶元素的答案设为当前数。这样,最后中剩下的元素都没有右边比它们大的数,它们的答案就是 -1。时间复杂度为 O(n)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值