Numpy
步步星愿
狭路相逢勇者胜
展开
-
NUMPY中伪随机数生成
相信每一个小伙伴都因为生产随机数而头疼过,下面我来进行一个汇总原创 2018-10-06 19:35:28 · 533 阅读 · 0 评论 -
Numpy中数组的特征信息
Numpy中数组的特征信息X.flags #数组的存储情况信息。X.shape #结果是一个tuple,返回本数组的行数、列数、……X.ndim #数组的维数,结果是一个数X.size #数组中元素的数量X.itemsize #数组中的数据项的所占内存空间大小X.dtype #数据类型X.T #如果X是矩阵,发挥的是X的转置矩阵X.trace() ...原创 2018-10-30 16:22:25 · 956 阅读 · 0 评论 -
NumPy数组基础与计算(一):Numpy随机数组的创建
最近几天在外实训,闲着无聊,打算回顾一下科学计算库,在数据挖掘中经常用到numpy库进行数据分析与计算。一、从头创建数组1、创建一个长度为10的数组,数组的值都为0:np.zeros(10,dtype=int)array([0,0,0,0,0,0,0,0,0,0]2、创建一个3*5的浮点型数组,数组的值全部为1np.ones((3,5),dtype=float)array([[...原创 2018-11-09 11:43:00 · 26070 阅读 · 0 评论 -
NumPy数组基础与计算(二):Numpy数组索引
其实python的索引值和Numpy的索引值很多都是非常相似:例如:x1array([6, 3, 7, 4, 6, 9])#正向获取元素,从索引为0开始,而不是1x1[0]6#为了便捷的获取末尾的索引,可以使用负数x1[-1]9x[-2]6#在多维数组中,可以用逗号分隔的索引元组获取元素x2array([[2, 6, 7, 4], [3, 7, 7...原创 2018-11-09 20:07:43 · 512 阅读 · 0 评论 -
NumPy数组基础与计算(三):Numpy数组切片
Numpy的语法与python语法的切片方法相同获取数组切片的方法:x[start:stop:step]三个函数有默认值,三个参数默认值为start=0,stop=维度的大小,step=1。1、一维子数组x=np.arange(10)xarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])x[:5] #取x中的前5个元素array([0,1,2,3,4])...原创 2018-11-09 21:15:13 · 747 阅读 · 2 评论 -
NumPy数组基础与计算(四):Numpy数组的拼接和分裂
前文的操作毕竟只是针对于单一数组,但是有时候我们需要对多个数组进行操作,比如说拼接和分裂1、数组的拼接连接两个数组主要由np.concatenate,np.vstack和np.hstack实现x=np.array([1,2,3])y=np.array([3,2,1])np.concatenate([x,y]) #利用np.concatenate对一维数组进行拼接array([1, 2...原创 2018-11-10 21:16:31 · 740 阅读 · 0 评论 -
NumPy数组基础与计算(五):Numpy的通用函数
Numpy的运算比较简单,,,1、数组的运算运算符对应的通用函数及其描述+np.add #加法运算–np.subtract #减法运算–np.megative # 负数运算*np.multlply # 乘法运算/np.divide #除法运算//np.floor_divide #除法取整**np.power #指数运算...原创 2018-11-14 17:38:12 · 1160 阅读 · 1 评论 -
Numpy中的shape和reshape
新数组的shape属性应该要与原来数组的一致,即新数组元素数量与原数组元素数量要相等。一个参数为-1时,那么reshape函数会根据另一个参数的维度计算出数组的另外一个shape属性值。下面来举几个例子来理解一下:>>> z = np.array([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]])&...原创 2018-12-08 11:47:11 · 569 阅读 · 0 评论 -
numpy中的np.where()函数
np.where(条件),若条件满足,返回索引值np.where(条件,x,y),若条件满足,返回x,否则返回y原创 2019-10-09 11:38:49 · 3669 阅读 · 0 评论