明天天明~
码龄4年
  • 218,843
    被访问
  • 80
    原创
  • 209,488
    排名
  • 11,998
    粉丝
  • 191
    铁粉
关注
提问 私信

个人简介:编程之路

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2018-04-03
博客简介:

qq_41950447的博客

查看详细资料
  • 6
    领奖
    总分 2,563 当月 21
个人成就
  • 获得178次点赞
  • 内容获得69次评论
  • 获得498次收藏
创作历程
  • 52篇
    2021年
  • 6篇
    2020年
  • 26篇
    2019年
成就勋章
TA的专栏
  • Java开发
    3篇
  • 半导体
    1篇
  • 机器学习
    15篇
  • 深度学习
    3篇
  • python
    1篇
  • EasyExcel
    2篇
  • MybatisPlus
    7篇
  • 前端vue
    4篇
  • Exception
    3篇
  • SpringBoot
    11篇
  • Spring
    3篇
  • Java学习
    23篇
  • MYSQL
  • 计算机网络
    2篇
  • Git&Github
    2篇
兴趣领域 设置
  • 人工智能
    计算机视觉机器学习深度学习神经网络tensorflow数据分析
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

微纳半导体制程

一. 黄光工艺技术(微影技术)显影液里去显影才能看再硅片上看到图案。光刻胶分为正胶、负胶。1. 光刻胶的分类光刻根据在显影过程中曝光区域的去除或保留可分为两种-正性光刻胶(positive photoresist)和负性光刻胶(negative photoresist)。正性光刻胶之曝光部分发生光化学反应会溶于显影液,而未曝光部分不溶于显影液,仍然保留在衬底上,将与掩膜上相同的图形复制到衬底上。负性光刻胶之曝光部分因交联固化而不溶于显影液,而未曝光部分溶于显影液,将与掩膜上相反..
原创
发布博客 2021.11.13 ·
314 阅读 ·
1 点赞 ·
1 评论

Pytorch(二)

1. transforms的使用在pytorch官网下载数据集,并在transforms中显示直接打印数据集是PIL格式的,需要通过ToTensor转换格式。root自动下载的数据集的根目录train是否为训练集download是否自动下载训练集设置完,运行后就自动下载数据集train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transforms,downloa
原创
发布博客 2021.10.28 ·
71 阅读 ·
0 点赞 ·
0 评论

Pytorch(一)10.28

1. Dataset类代码实践加载数据集的类代码Dataset,获取所有根路径、标签路径,获取所有数据集图片,两个数据集连接os.path.join()路径拼接Image.open()打开图片PIL格式from torch.utils.data import Datasetfrom PIL import Imageimport os'''获取数据集所有路径import osdir_path = "dataset/train/ants"dir_path = "demo01/
原创
发布博客 2021.10.28 ·
61 阅读 ·
0 点赞 ·
0 评论

非极大抑制(Non-Maximum Suppression,NMS)

在进行目标检测的时候同一个物体可能存在好几个预测框,那我们通过非极大抑制来进行选取最优的框,去抑制那些冗余的框,NMS选择过程如下图所示NMS伪代码流程如上图所示:先看红色框中的B表示初始的预测框的listS包含了对应的预测框的分数N_t 是NMS的门限值,流程如下:如果B不为空则进行一下循环将B中的预测框按分数从大到小排序将最大的S对应的预测框存于M中,再将B中所有的预测框和M_i做IOU计算,如果大于N_t,将B中剔除M,M存于D这个空li...
原创
发布博客 2021.10.13 ·
123 阅读 ·
2 点赞 ·
0 评论

网络八股中打印acc曲线与loss曲线

history=model.fit(训练集数据, 训练集标签, batch_size=, epochs=,validation_split=用作测试数据的比例,validation_data=测试集, validation_freq=测试频率)history:loss:训练集lossval_loss:测试集losssparse_categorical_accuracy:训练集准确率val_sparse_categorical_accuracy:测试集准确率acc = history.his
原创
发布博客 2021.08.25 ·
133 阅读 ·
0 点赞 ·
0 评论

断点续训,存取模型

在进行神经网络训练过程中由于一些因素导致训练无法进行,需要保存当前的训练结果下次接着训练,这里保存的是训练后模型参数,当训练到最优解的时候,当loss最小的时候停止,保存模型参数,下次再进行训练的时候,利用保存的参数继续训练。首次先判断有没有生成的模型参数,没有则进行训练保存最有模型参数,有则利用文件中的模型参数进行训练。代码清单:## 断点继训#import tensorflow as tfimport osmnist = tf.keras.datasets.mnist(..
原创
发布博客 2021.08.25 ·
221 阅读 ·
0 点赞 ·
0 评论

自制数据集 数据增强

在用数据集进行测试的时候,不光是已经配置好的数据集,下面讲一下自己的数据集该怎么生成训练数据集。1.观察数据集结构,配成特征标签对上面文件夹存放的是数据集的图片,其中训练集60000张,测试集10000张,txt文件存放的是对应图片的标签2.在代码中写上这四个文件的路径,以及s生成的npy数据集的路径train_path = 'G:\Desktop\mooc\class4\MNIST_FC\mnist_image_label\mnist_train_jpg_60000/...
原创
发布博客 2021.08.20 ·
1428 阅读 ·
2 点赞 ·
0 评论

TensorflowAPI:tf.keras搭建网络八股,改进鸢尾花分类

一.用tf.keras创建网络的步骤1.import 引入相应的python库2.train,test告知要喂入的网络的训练集和测试集是什么,指定训练集的输入特征,x_train和训练集的标签y_train,以及测试集的输入特征和测试集的标签。3.model = tf,keras,models,Seqential 在Seqential中搭建网络结构,逐层表述每层网络,走一边前向传播。4.model.compile 在complie()中配置训练方法。告知训练器选择哪种优化器,选择哪个损失函数
原创
发布博客 2021.08.18 ·
127 阅读 ·
1 点赞 ·
0 评论

L2正则化缓解过拟合实例

正则化(Regularization)是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称。也就是目标函数变成了原始损失函数+额外项,常用的额外项一般有两种,英文称作ℓ1−normℓ1−norm和ℓ2−normℓ2−norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数(实际是L2范数的平方)。 L2正则化,拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度...
原创
发布博客 2021.08.15 ·
473 阅读 ·
3 点赞 ·
4 评论

mgrid与meshgrid生成数据的区别以及与contour等高线的联系

一、meshgrid函数meshgrid函数通常使用在数据的矢量化上。它适用于生成网格型数据,可以接受两个一维数组生成两个二维矩阵,对应两个数组中所有的(x,y)对。一、mgrid函数返回多维结构,常见的如2D图形,3D图形。对比np.meshgrid,在处理大数据时速度更快,且能处理多维(np.meshgrid只能处理2维)ret = np.mgrid[ 第1维,第2维 ,第3维 , …]返回多值,以多个矩阵的形式返回,具体请见代码代码清单:xx, yy = np.mgr..
原创
发布博客 2021.08.14 ·
96 阅读 ·
0 点赞 ·
0 评论

MOOC北大tensorflow笔记二

一. 神经网络(NN)的复杂度NN复杂度:多个NN层数和NN参数的个数表示。1.空间复杂度层数=隐藏层层数+一个输出层总参数=总w+总b2.时间复杂度乘加运算次数二.指数衰减学习率在神经网络的参数更新过程中,学习率不能太大也不能太小,太大可能会导致参数在最优值两侧来回移动,太小会大大降低优化速度,为了解决学习率的问题,TensorFlow 提供了一种灵活的学习率设置方法,即指数衰减法。可以用较大的学习率,快速得到较优解,然后逐步减小学习率,使模型在训练后期稳定。.
原创
发布博客 2021.08.12 ·
137 阅读 ·
0 点赞 ·
0 评论

深入理解tensorflow梯度下降实现鸢尾花分类

看了吴恩达的机器学习后,总感觉对矩阵形式的梯度下降理解的不够透彻,通过tensorflow实现鸢尾花的分类,来更好的理解梯度下降的过程。 for step, (x_train, y_train) in enumerate(train_db): #batch级别的循环 ,每个step循环一个batch # print(step) print(x_train.shape)#32*4 with tf.GradientTape() as tape: # wi
原创
发布博客 2021.08.08 ·
469 阅读 ·
0 点赞 ·
1 评论

看透np.random.seed()函数只需此文

np.random.seed(n)用于生成指定的随机数,什么是指定的呢?就是这个函数将随机数分为n个堆,每个堆生成不同的随机数,参数n就表示第个堆,如果多次用此函数,并且n相同,则受此函数影响的np.random.rand()取得的随机数的值是相同的,因为在同一个堆中取得值。比如下面的例子。import numpy as npif __name__ == '__main__': i = 0 while(i<6): if(i<3):
原创
发布博客 2021.08.05 ·
179 阅读 ·
0 点赞 ·
0 评论

MOOC北大tensorflow笔记一

一.张量·张量tensor :多维数组(列表) 阶:张量的维数·张量可以表示0阶到n阶数组(列表)张量的数据类型:代码清单:import tensorflow as tfimport numpy as npa=tf.constant([[2,3],[2,5]],dtype=tf.int32)print(a)print(a.dtype)print(a.shape)b=tf.constant(np.arange(12).reshape((3,4)),dtype=tf.
原创
发布博客 2021.08.04 ·
267 阅读 ·
0 点赞 ·
0 评论

吴恩达机器学习课后作业 单变量线性回归

题目描述: 在本部分的练习中,您将使用一个变量实现线性回归,以预测食品卡车的利润。假设你是一家餐馆的首席执行官,正在考虑不同的城市开设一个新的分店。该连锁店已经在各个城市拥有卡车,而且你有来自城市的利润和人口数据。您希望使用这些数据来帮助您选择将哪个城市扩展到下一个城市。x表示人口数据,y表示利润,一共97行数据。作业一,二数据集文件,单变量线性回归、多变量线性回归链接: https://pan.baidu.com/s/1YQxiQfYf0Jdd6vC1KfUQVQ 提取码: yk.
原创
发布博客 2021.07.26 ·
158 阅读 ·
0 点赞 ·
0 评论

fashion_mnist分类模型的数据读取与显示

FashionMNIST 是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。FashionMNIST 的大小、格式和训练集 / 测试集划分与原始的 MNIST 完全一致。60000/10000 的训练测试数据划分,28x28 的灰度图片。经典的MNIST数据集包含了大量的手写数字。十几年来,来自机器学习、机器视觉、人工智能、深度学习领域的研究员们把这个数据集作为衡量算法的基准.
原创
发布博客 2021.07.07 ·
461 阅读 ·
2 点赞 ·
2 评论

Tensorflow-keras实战一

1. keras是什么◆基于python的高级神经网络API,不是一个完整的库。◆Francois Chollet于2014-2C15年编写Keras。◆以Tensorflow、 CNTK或者Theano为后端运行, keras必须有后端才可以运行。后端可以切换,现在多用tensorflow◆极方便于快速实验,帮助用户以最少的时间验证自己的想法。2. Tensorflow-keras是什么◆Tensorflow对keras API规范的实现◆相对于以tensorflow为后端的kera
原创
发布博客 2021.07.06 ·
100 阅读 ·
0 点赞 ·
0 评论

Tensorflow

一. Tensorflow是什么Google的开源软件库◆采取数据流图,用于数值计算数据流图节点-处理数据。线–节点间的输入输出关系。线_ 上运输张量。节点被分配到各种计算设备上运行,这也是在多设备运行的原因。◆支持多种平台-GPU、 CPU、移动设备◆最初用于深度学习,变得越来越通用二. 特性◆高度的灵活性◆真正的可移植性一地开发多端部署!可支持手机、服务器、电脑、各种操作系统的多种部署地。◆产品和科研结合此框架优化程度很好,科研成果可以无缝的转移到产品上。◆自动求微分
原创
发布博客 2021.06.18 ·
57 阅读 ·
0 点赞 ·
0 评论

吴恩达机器学习

机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。例如,让机器人整齐有序的打扫房子,怎样去实现?我们要做的是让机器人观察我们完成任务的过程,从而从中学习。人工智能、机器学习、深度学习、神经网络之间的关系:人工智能(Artificial Intelligence)是研
原创
发布博客 2021.06.12 ·
140 阅读 ·
0 点赞 ·
0 评论

关于float属性导致button按钮无法点击问题的解决思路

问题描述:有两个标签p和span,p位于span上层,button位于span中,当点击button的时候,button没有动作。部分代码HTML代码 <p> {{ chapter.title }} <span class="acts"> <el-button style="" type="text" @click="openVideo(chapter.id)">添加小节</el-button> &
原创
发布博客 2021.04.29 ·
1852 阅读 ·
9 点赞 ·
2 评论
加载更多