poj 4006 Genghis Khan the Conqueror 树形dp

62 篇文章 0 订阅

题目链接: http://poj.org/problem?id=4006

题意:

你现在有一个 n n n 个结点 m m m 条边的无向带权连通图,现在你有 q q q 个等概率发生的改变,每次会将原图中某一条原先存在的边权变大,但只会改变其中的一条,问你在这样的情况下,图中生成最小生成树权值的期望是多少。

做法:

先对原图中的点做最小生成树,如果改变的边不在这棵树上,那么直接加上最小生成树的值即可。

重要的是在这棵树上的边的改变。如果某一条边发生了改变,那么应该是对原图中这条边两端点所在的集合中再找一条相连的最小边(因为原边变大了)。可以知道的是,最多也只会改变一条边,并且这条边如果出现在原来的树中,一定会形成一个环。

原先我的想法是,用一个“次小边”的概念,是树上每一条边两端的结点除原来的最小值外再求一个次小值。原先不在这个树上的边,可以用来更新这个环上的最多两条链的次小值,在改变这条边的时候,只需要在次小值和变大后的值中取 m i n min min 即可。

但是线段树写的有点麻烦,树链剖分又…emmmm…不熟练。

所以就参考了网上稍微简便一点的方法写,用 d p [ u ] [ v ] dp[u][v] dp[u][v] 表示,树上一条边两边的点集 u u u v v v 要重新相连的次短边(其实和我原来的概念挺像的,只是大佬的 dp 要方便好多…)。

这个该怎么做呢,因为只有 3000 3000 3000 个点,所以我们完全可以 O ( n 2 ) O(n^2) O(n2) 的来做,对于每一个点都可以把它当做根节点做一次 d f s dfs dfs ,每次从叶子开始将根到这个集合的最小的值记录下来,来更新以这个叶子往上的所有子树。

代码

#include <cstdio>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep_e(i,u,v) for(int i=head[u],v=to[i];~i;i=nex[i],v=to[i])
using namespace std;
typedef long long ll;
const int maxn=3005;
const int maxm=maxn*2;
const ll inf = 1e16;
struct edge{
    int u,v;ll val;
}e[maxn*maxn];
int n,m;
ll dis[maxn][maxn],dp[maxn][maxn],fa[maxn];
int head[maxn],to[maxm],nex[maxm],cnt;
bool mark[maxn][maxn];
int fin(int x){
    return fa[x]==x?x:fa[x]=fin(fa[x]);
}
void add(int u,int v){
    //printf("from = %d   to = %d\n",u,v);
    to[cnt]=v;nex[cnt]=head[u];
    head[u]=cnt++;
}

void addEdge(int u,int v,ll val,int id){
    e[id].u=u,e[id].v=v,e[id].val=val;
    dis[u][v]=dis[v][u]=val;
}
void init(){
    rep(i,1,n) {
        head[i]=-1; fa[i]=i;
        rep(j,1,n) {
            dis[i][j]=inf; dp[i][j]=inf;
            mark[i][j]=false;
        }
    }
    cnt=0;

}
bool cmp(edge a,edge b){
    return a.val<b.val;
}
ll Kru(){
    sort(e+1,e+1+m,cmp);
    ll ret=0;
    rep(i,1,m){
        int u=e[i].u,v=e[i].v;
        int fu=fin(u),fv=fin(v);
        if(fu!=fv){
            add(u,v); add(v,u);
            ret+=e[i].val;
            mark[u][v]=mark[v][u]=true;
            fa[fu]=fv;
        }
    }
    return ret;
}
ll dfs(int u,int f,int rt){
    ll ret=inf;
    rep_e(i,u,v){
        if(v==f) continue;
        ll nex=dfs(v,u,rt);
        dp[u][v]=dp[v][u] =min(dp[u][v],nex);
        ret=min(nex,ret);
    }
    if(f!=rt) ret=min(dis[rt][u],ret);
    return ret;
}
int main(){
    while(~scanf("%d%d",&n,&m)){
        if(n==0&&m==0) break;
        init();
        rep(i,1,m){
            int x,y; ll val; scanf("%d%d%lld",&x,&y,&val); x++,y++;
            addEdge(x,y,val,i);
        }
        ll Min=Kru();
        for(int i=1;i<=n;i++) dfs(i,-1,i);
        int q; scanf("%d",&q);
        double ans=0;
        rep(i,1,q){
            int x,y; ll tv; scanf("%d%d%lld",&x,&y,&tv); x++,y++;
            if(!mark[x][y]) ans=ans+Min;
            else{
                ans=ans+Min-dis[x][y]+min(tv,dp[x][y]);
            }
        }
        ans=(double)ans*1.0/q;
        printf("%.4f\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值