CF932 D. Tree 倍增

题目链接: https://codeforces.com/contest/932/problem/D

题意

4e5次操作,每次操作有两种不同内容

1 1 1 f f f w w w 表示新增加一个结点,以 f f f 作为其父节点,新结点权值为 w w w
2 2 2 u u u s u m sum sum 表示以结点 u u u 为第一个元素找到一个序列,要求:
① 序列中靠后的点必须是前面的点的父亲。
② 序列所有结点的和不能超过 s u m sum sum
③ 序列中靠后的结点的权值必须大于等于前面的点,并且对于两个相邻结点来说,在树上在这两个点之间的简单路径中,不能有结点的权值超过子节点(注意子节点权值小一点)

做法

这个题意也是理解了我很久…其实这里我们就能发现原来的树就没什么用了,可以直接做一个新的树,新的树中所有的子结点都刚好小于等于父节点的权值,同时记录父节点到自己的前缀和。题目也要求了强制在线。

看到这里就想到了类似 L C A LCA LCA 的做法,用倍增,记录父亲和前缀和,把复杂度降到 l o g log log

代码

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i = (int)a;i<=(int)b;i++)
#define pb push_back
#define lson rt<<1
#define rson rt<<1|1
#define mid (l+r)/2
using namespace std;
const int maxn=400005;
typedef long long ll;
typedef pair<int,int> pii;
const ll MAX=1e18;
ll fa[maxn][21],last,q,cnt;;
ll sum[maxn][21],val[maxn];
int main(){
    scanf("%d",&q);
    rep(i,0,20) sum[1][i]=MAX;
    val[1]=0; cnt=1; val[0]=MAX;
    while(q--){
        int op;
        ll u,v; scanf("%d%lld%lld",&op,&u,&v);
        u^=last; v^=last;
        if(op==1){
            cnt++; val[cnt]=v;
            if(val[u]>=v) fa[cnt][0]=u;
            else{
                for(int i=20;i>=0;i--){
                    if(val[fa[u][i]]<v) u=fa[u][i];
                }
                fa[cnt][0]=fa[u][0];
            }
            sum[cnt][0]=((fa[cnt][0]==0)?MAX:val[fa[cnt][0]]);
            rep(i,1,20){
                fa[cnt][i]=fa[fa[cnt][i-1]][i-1];
                sum[cnt][i]=((fa[cnt][i]==0)?MAX:sum[fa[cnt][i-1]][i-1]+sum[cnt][i-1]);
            }
        }
        else {
            if(val[u]>v){
                printf("0\n");
                last=0;
                continue;
            }
            ll ans=1;
            v-=val[u];
            for(int i=20;i>=0;i--){
                if(sum[u][i]<=v){
                    ans+=(1<<i);
                    v-=sum[u][i];
                    u=fa[u][i];
                }
            }
            last=ans;
            printf("%d\n",ans);
        }
    }
    return 0;
}
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页