【FlappyBird小游戏】编写AI逻辑(四)——搭建CNN网络

本文详细介绍了如何在 TensorFlow 中封装基本的卷积、最大池化和扁平化操作,以及如何构建卷积神经层和全连接层。通过实例展示了卷积神经网络的构建过程,包括卷积池化层 L1、L2 和 L3,以及全连接层 L4 和 L5,最后输出网络的预测结果。
摘要由CSDN通过智能技术生成

本文隶属于一个完整小项目,建议读者按照顺序阅读。

本文仅仅展示最关键的代码部分,并不会列举所有代码细节,相信具备RL基础的同学理解起来没有困难。

全部的AI代码可以在【Python小游戏】用AI玩Python小游戏FlappyBird【源码】中找到开源地址。

如果本文对您有帮助,欢迎点赞支持!


文章目录

前言 

一、封装基本操作

1、卷积操作

2、最大池化操作

3、扁平化操作

二、封装基本神经层

1、卷积操作

2、封装卷积神经层

三、封装基本神经网络


前言 

image.png

一、封装基本操作

1、卷积操作

    def __conv2d(self, input, weights, stride, padding='SAME'):
        layer = tf.nn.conv2d(input=input,  # 输入的原始张量
                             filter=weights,  # 卷积核张量,(filter_height、 filter_width、in_channels,out_channels)
                             strides=[1, stride, stride, 1],
                             padding=padding)
        return layer

2、最大池化操作

    def __maxpool2d(self, input, stride=2, padding='SAME'):
        layer = tf.nn.max_pool(value=input,  # 这是一个float32元素和形状的四维张量(批长度、高度、宽度和通道)
                               ksize=[1, stride, stride, 1],  # 一个整型list,表示每个维度的窗口大小
                               strides=[1, stride, stride, 1],  # 在每个维度上移动窗口的步长。
                               padding=padding)  # VALID或SAME
        return layer

3、扁平化操作

 def __flattenlayer(self,layer):
        layer_shape = layer.get_shape() # 扁平前 (?, 8, 8, 64)
        num_features = layer_shape[1:4].num_elements() # [1:4]: (8, 8, 64),num_features: 4096
        re_layer = tf.reshape(layer, [-1, num_features])# 扁平后 (?, 4096)
        return re_layer

二、封装基本神经层

1、卷积操作

def _define_fc_layer(self,inputs, # 输入数据
                         num_inputs,# 输入通道数
                         num_outputs,# 输出通道数
                         activation_function, # 激活函数
                         layer_name,  # 卷积层名字
                         c_names=None,
                         regularizer__function=None,
                         is_historgram=True):
        """ 定义一个全连接神经层"""
        with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
            weights = self.__define_weights(shape=[num_inputs, num_outputs], c_names=c_names, regularizer__function=regularizer__function)
            biases = self.__define_biases(size=num_outputs, c_names=c_names)
            with tf.variable_scope('wx_plus_b'):
                # 神经元未激活的值,矩阵乘法size
                wx_plus_b = tf.matmul(inputs, weights) + biases
            # 使用激活函数进行激活
            if activation_function is None:
                outputs = wx_plus_b
            else:
                outputs = activation_function(wx_plus_b)
            if is_historgram:  # 是否记录该变量用于TensorBoard中显示
                tf.summary.histogram(layer_name + '/outputs', outputs)
                # 返回神经层的输出
        return outputs

2、封装卷积神经层

    def _define_conv2d_layer(self,inputs,# 输入数据
                             num_input_channels,# 输入通道数
                             conv_filter_size, # 卷积核尺寸
                             num_filters,# 卷积核数量,即输出通道数
                             stride ,# 卷积核步长
                             activation_function, # 激活函数
                             layer_name, # 卷积层名字
                             c_names=None,
                             regularizer__function=None,
                             is_historgram=True):
        """ 定义一个卷积神经层"""
        with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
            weights = self.__define_weights( shape=[conv_filter_size, conv_filter_size, num_input_channels, num_filters],c_names=c_names,regularizer__function=regularizer__function)
            biases = self.__define_biases( size=num_filters,c_names=c_names)
            with tf.variable_scope('conv_plus_b'):
                # 神经元未激活的值,卷积操作
                conv_plus_b = self.__conv2d(inputs, weights, stride) + biases
            # 使用激活函数进行激活
            if activation_function is None:
                outputs = conv_plus_b
            else:
                outputs = activation_function(conv_plus_b)
            if is_historgram:  # 是否记录该变量用于TensorBoard中显示
                tf.summary.histogram(layer_name + '/outputs', outputs)
        # 返回神经层的输出
        return outputs

三、封装基本神经网络

        # 定义卷积池化层L1
        layer_conv1 = self._define_conv2d_layer(inputs=input,
                                                conv_filter_size=8,
                                                num_input_channels=4,
                                                num_filters=32,
                                                stride =4 ,
                                                activation_function=tf.nn.relu,
                                                c_names = c_names,
                                                layer_name = 'layer_conv1')
        layer_conv_pool1 = self.__maxpool2d(layer_conv1)
        # 定义卷积层L2
        layer_conv2 = self._define_conv2d_layer(inputs=layer_conv_pool1,
                                                conv_filter_size=4,
                                                num_input_channels=32,
                                                num_filters=64,
                                                stride=2,
                                                activation_function=tf.nn.relu,
                                                c_names=c_names,
                                                layer_name='layer_conv2')
        # 定义卷积层L3
        layer_conv3 = self._define_conv2d_layer(inputs=layer_conv2,
                                                conv_filter_size=3,
                                                num_input_channels=64,
                                                num_filters=64,
                                                stride=1,
                                                activation_function=tf.nn.relu,
                                                c_names=c_names,
                                                layer_name='layer_conv3')
        layer_conv3_flat = tf.reshape(layer_conv3, [-1, 1600])
        self.__flattenlayer(layer_conv3)
        # 定义全连接层L4
        layer_fnn4 = self._define_fc_layer(inputs=layer_conv3_flat,
                                                num_inputs=1600,
                                                num_outputs=512,
                                                activation_function=tf.nn.relu,
                                                c_names=c_names,
                                                layer_name='layer_fnn4')
        # 定义全连接层L5
        output = self._define_fc_layer(inputs=layer_fnn4,
                                       num_inputs=512,
                                       num_outputs=self.n_actions,
                                       activation_function=None,
                                       c_names=c_names,
                                       layer_name='layer_fnn5')
        return output

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔法攻城狮MRL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值