一、基本思路
基本思路: 第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾。以此类推,直到前n个元素都有序。
简单来说: 就是从n个元素中先找出最小元素放到第一个位置,再从n-1个元素中找出最小元素放到第二个位置,以此类推,直到前n-1个位置确定。
举例:
有一序列为:101,34,119,1要求按升序排列
从左到右遍历序列,找出最小值
- 第一轮比较(比较101与后面3个数)
(1)1,34,119,101(最小值为1,交换101和1) - 第二轮比较(比较34与后面的2个数)
(1)1,34,119,101(最小值为34,不交换) - 第三轮比较(比较119和后面1个数)
(1)1,34,101,119(最小值为101,交换101和119
序列一共四个数,此时前三个数已经确定,序列也就确定下来了
二、算法分析
时间: 可以看到,选择排序和前面的冒泡排序有点像,都是进行比较序列并逐渐确定最大值或最小值,不同的是,冒泡排序是相邻两个数进行比较,逐渐将最大值后移,而选择排序则是第i个数和后面n-i个数都进行比较并找出最小(大)值。选择排序每个元素都要与其他元素比较一次才行,不管初始序列如何,n个元素的序列都需要n-1轮的比较,所以最好和最坏情况下的时间复杂度都是O(n²)。
空间: 可以看到,选择排序是直接在序列上进行比较和交换,无需另外开辟空间,所以空间复杂度为O(1)。
算法 | 平均时间 | 最好情形 | 最坏情形 | 稳定度 | 空间复杂度 | 备注 |
---|---|---|---|---|---|---|
选择排序 | O(n²) | O(n²) | O(n²) | 不稳定 | O(1) | n小时较好 |
三、代码实现
import java.util.Arrays;
/**
* @author dankejun
* @create 2020-04-28 10:57
*/
public class SelectSort {
public static void main(String[] args) {
int arr[] = {101, 34,-3, 119, 1,-5};
// int arr[] = {1,2,3,4,5,6};
// int arr[] = {6,5,4,3,2,1};
selectSotr(arr);
System.out.println(Arrays.toString(arr));
}
public static void selectSotr(int[] arr) {
int minIndex ;
int min ;
for (int i = 0; i < arr.length - 1; i++) {
//假设第i个元素是最小的,开始与后面的元素进行比较
minIndex = i;
min = arr[i];
for (int j = i + 1; j < arr.length; j++) {//从第i+1个元素开始,依次和第i个元素进行比较
if (min > arr[j]) {//如果找到一个比arr[i]小的元素,就记录这个元素的值与下标
min = arr[j];
minIndex = j;
}
}
if (i != minIndex) {//找到一个值小于arr[i],就交换
arr[minIndex] = arr[i];
arr[i] = min;
}
System.out.printf("第%d轮:%s\n",i+1,Arrays.toString(arr));
}
}
}
通常随机情况:
测试序列: int arr[] = {101, 34,-3, 119, 1,-5};
测试结果:
待排序列升序情况:
测试序列: int arr[] = {1,2,3,4,5,6};
测试结果:
待排序列逆序情况:
测试序列: int arr[] = {6,5,4,3,2,1};
测试结果: