算法笔记-问题 D: 八皇后

问题 D: 八皇后

题目描述

 

会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。 
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。

 

输入

 

第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)

 

输出

 

输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。

 

样例输入 Copy

3
6
4
25

样例输出 Copy

25713864
17582463
36824175

代码:

#include <bits/stdc++.h>

using namespace std;

const int maxn = 11;
const int n = 8;

int  P[maxn], hashTable[maxn]={false};
int cont = 0;
void generateP(int index, int m){
    if(cont == 92) cont = 0;
    if(index==n+1){
        if(cont==m){
            for(int i=1; i<=n; i++){
                printf("%d", P[i]);
            }
        }
        cont++;
        return;
    }
    for(int x=1; x<=n; x++){
        if(hashTable[x] == false){
            bool flag = true;
            for(int pre=1; pre<index; pre++){
                if(abs(index-pre)==abs(x - P[pre])){
                    flag = false;
                    break;
                }
            }
            if(flag){
                P[index] = x;
                hashTable[x] = true;
                generateP(index + 1, m);
                hashTable[x] = false;
            }
        }
    }
}

int main(){
    int n;
    while(scanf("%d", &n)!=EOF){
        while(n--){
            int m;
            scanf("%d", &m);
            generateP(1, m-1);
            printf("\n");
            getchar();
        }
    }
    return 0;
}

 

代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值