问题 D: 八皇后
题目描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入 Copy
3 6 4 25
样例输出 Copy
25713864 17582463 36824175
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 11;
const int n = 8;
int P[maxn], hashTable[maxn]={false};
int cont = 0;
void generateP(int index, int m){
if(cont == 92) cont = 0;
if(index==n+1){
if(cont==m){
for(int i=1; i<=n; i++){
printf("%d", P[i]);
}
}
cont++;
return;
}
for(int x=1; x<=n; x++){
if(hashTable[x] == false){
bool flag = true;
for(int pre=1; pre<index; pre++){
if(abs(index-pre)==abs(x - P[pre])){
flag = false;
break;
}
}
if(flag){
P[index] = x;
hashTable[x] = true;
generateP(index + 1, m);
hashTable[x] = false;
}
}
}
}
int main(){
int n;
while(scanf("%d", &n)!=EOF){
while(n--){
int m;
scanf("%d", &m);
generateP(1, m-1);
printf("\n");
getchar();
}
}
return 0;
}