零基础入门天池CV赛事
元晦CS
一辈子很长,要和有趣的人在一起;
余生,不要再辜负青春和梦想!
展开
-
零基础入门天池CV赛事之——街景字符编码识别(5)—— 模型集成
本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。 1. 学习目标: 学习集成学习方法以及交叉验证情况下的模型集成 学会使用深度学习模型的集成学习 2. 集成学习方法: 在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。 由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。 下面假设构建了10原创 2020-06-02 22:14:08 · 233 阅读 · 0 评论 -
零基础入门天池CV赛事之——街景字符编码识别(4)—— 模型训练与验证
1. 学习目标: 理解验证集的作用,并使用训练集和验证集完成训练 学会使用Pytorch环境下的模型读取和加载,并了解调参流程 2. 构造验证集: 在机器学习模型(特别是深度学习模型)的训练过程中,模型是非常容易过拟合的。深度学习模型在不断的训练过程中训练误差会逐渐降低,但测试误差的走势则不一定。 在模型的训练过程中,模型只能利用训练数据来进行训练,模型并不能接触到测试集上的样本。因此模型如果将训练集学的过好,模型就会记住训练样本的细节,导致模型在测试集的泛化效果较差,这种现象称为过拟合(Overf原创 2020-05-30 22:58:33 · 371 阅读 · 1 评论 -
零基础入门天池CV赛事之——街景字符编码识别(3)—— 字符识别模型
1. 学习目标 学习CNN基础和原理; 使用Pytorch框架构建CNN模型并完成训练 2. CNN介绍 卷积神经网络(CNN)是是一类特殊的人工神经网络,是深度学习中一个重要的分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。 CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输原创 2020-05-26 22:23:39 · 391 阅读 · 0 评论 -
零基础入门天池CV赛事之——街景字符编码识别(2)——数据读取与数据扩增
1. 学习目标 学习Python和Pytorch中图像读取 学会扩增方法和Pytorch读取赛题数据 2. 图像读取 由于赛题数据是图像数据,赛题的任务是识别图像中的字符。因此我们首先需要完成对数据的读取操作,在Python中有很多库可以完成数据读取的操作,比较常见的有Pillow和OpenCV。 2.1 Pillow Pillow是Python图像处理函式库(PIL)的一个分支。Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库。原创 2020-05-23 23:41:56 · 216 阅读 · 0 评论 -
零基础入门天池CV赛事之——街景字符编码识别(1)
一、首先配置相关环境: 1. 安装Anaconda软件 去Anaconda的官网下载Anacondahttps://www.anaconda.com/products/individual 里面有各种系统版本(本次实验在win10下进行) 安装完之后, 进入Anaconda的安装目录下的Scripts,根据各自的目录, 打开cmd命令行,为了避免权限问题,最好使用管理员权限打开,并查询conda的版本, 使用 conda --version 显示如下: 可以看到conda 4.7.1原创 2020-05-20 23:51:03 · 425 阅读 · 0 评论