无重复字符的最长子串(中等难度)

这篇博客详细介绍了如何使用滑动窗口算法来解决寻找字符串中无重复字符的最长子串的问题。代码示例展示了在Java中实现这一算法的过程,通过维护一个HashMap来跟踪字符及其位置,并利用两个指针left和i作为窗口边界,动态调整窗口大小以找到最长不重复子串。
摘要由CSDN通过智能技术生成

题目概述(中等难度)

在这里插入图片描述
在这里插入图片描述

题目链接
无重复字符的最长子串

思路与代码

思路展现

在这里插入图片描述

代码示例

class Solution {
    public int lengthOfLongestSubstring(String s) {
        HashMap<Character, Integer> map = new HashMap<>();
        int maxLen = 0;//用于记录最大不重复子串的长度
        int left = 0;//滑动窗口左指针
        //其实i就已经是右指针了
        for (int i = 0; i < s.length() ; i++)
        {
            /**
            1、首先,判断当前字符是否包含在map中,如果不包含,将该字符添加到map(字符,字符在数组下标),
             此时没有出现重复的字符,左指针不需要变化。此时不重复子串的长度为:i-left+1,与原来的maxLen比较,取最大值;

            2、如果当前字符 ch 包含在 map中,此时有2类情况:
             1)当前字符包含在当前有效的子段中,如:abca,当我们遍历到第二个a,当前有效最长子段是 abc,我们又遍历到a,
             那么此时更新 left 为 map.get(a)+1=1,当前有效子段更新为 bca;
             2)当前字符不包含在当前最长有效子段中,如:abba,我们先添加a,b进map,此时left=0,我们再添加b,发现map中包含b,
             而且b包含在最长有效子段中,就是1)的情况,我们更新 left=map.get(b)+1=2,此时子段更新为 b,而且map中仍然包含a,map.get(a)=0;
             随后,我们遍历到a,发现a包含在map中,且map.get(a)=0,如果我们像1)一样处理,就会发现 left=map.get(a)+1=1,实际上,left此时
             应该不变,left始终为2,子段变成 ba才对。

             为了处理以上2类情况,我们每次更新left,left=Math.max(left , map.get(ch)+1).
             另外,更新left后,不管原来的 s.charAt(i) 是否在最长子段中,我们都要将 s.charAt(i) 的位置更新为当前的i,
             因此此时新的 s.charAt(i) 已经进入到 当前最长的子段中!
             */
            if(map.containsKey(s.charAt(i)))
            {
                left = Math.max(left , map.get(s.charAt(i))+1);
            }
            //不管是否更新left,都要更新 s.charAt(i) 的位置!
            map.put(s.charAt(i) , i);
            maxLen = Math.max(maxLen , i-left+1);
        }
        
        return maxLen;
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值