合并果子(二叉堆实现)

描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。 
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。 
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。 
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

格式

输入格式

输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

输出格式

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

样例1

样例输入1[复制]

3 
1 2 9

样例输出1[复制]

15 

限制

每个测试点1s

来源

NOIp 2004

代码:

#include <iostream>
#include <algorithm>
using namespace std;
const int SIZE=200000;
int heap[SIZE],n=0,y;
void up(int p)
{
	while(p>1)
	{
 		if(heap[p]<heap[p/2])
 		{
 			swap(heap[p],heap[p/2]);
 			p/=2;	
 			
 		}
 		else break;
 		
 	}
}
void Insert(int val)
{
 	heap[++n]=val;
 	up(n);
 	
}
int down(int p)
{
	int s=p*2;
	while(s<=n)
	{
		if(s<n&&heap[s]>heap[s+1]) s++;
		if(heap[s]<heap[p])
		{
			swap(heap[s],heap[p]);
			p=s,s=p*2;
		}
		else break;
		
	}
}
void Extract()
{
	heap[1]=heap[n--];
	down(1);
	
}
int main()
{
 	int a,m,sum=0;
 	cin>>m;
 	for(int i=0;i<m;i++)
 	{
 		cin>>a;
 		Insert(a); 		
 	}
 	for(int i=1;i<m;i++)
	{
 		int t=heap[1];
 		Extract();
 		heap[1]+=t;
 		sum+=heap[1];
 		down(1);
 		
 	}
 	cout<<sum;
 	return 0;
 	
}

阅读更多
文章标签: C 二叉树 NOI
上一篇POJ 2185 Milking Grid(KMP)
下一篇BZOJ 2351 Matrix
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭