python画图常规设置

       python绘图的包大家应该不会陌生,但是,对图的常规设置不一定会知道(其实自己也是才知道的尴尬),比如:坐标轴的字体大小、颜色设置;标题的字体颜色大小设置;线的粗细、颜色;图片风格的设置等。了解这些常规设置必定会让图片更加美观。

下面就具体来说说matplotlib中有哪些常规设置。

我主要总结了这几个函数:

  • plt.style.use()函数;可以对图片的整体风格进行设置。可以通过plt.style.availabel知道一共有多少种主题。


 
 
  1. import matplotlib.pyplot as plt
  2. import numpy as np
  3. import pandas as pd
  4. import matplotlib as mpl
  5. print plt.style.availabel



我们试用其中两个主题。


 
 
  1. plt.style.use( "fivethirtyeight")
  2. data = np.random.randn( 50)
  3. plt.scatter(range( 50), data)


 
 
  1. with plt.style.context(( 'dark_background')):
  2. plt.plot(np.sin(np.linspace( 0, 2 * np.pi)), 'r-o') # "r-o"表示红色的点用线连接起来。
  3. plt.show()

  • mpl.rcParams()函数;这个函数可以设置图片的坐标轴以及标题的字体大小、颜色、宽度等。同时,也可以用mpl.rcParams.keys()进行查看有哪些设置。



 
 
  1. mpl.rcParams[ 'xtick.labelsize'] = 16
  2. mpl.rcParams[ "ytick.color"] = 'b'
  3. plt.plot(range( 50), data, 'g^')
  4. plt.show()

这张图就通过rcParams()函数设置了y轴的字体颜色,x轴的字体大小。同时,将点的marker变成了三角形、颜色变为了绿色。


  • mpl.rc()函数;它可以用来设置线的粗细、风格、颜色等。

 
 
  1. mpl.rc( 'lines', linewidth= 4, color= 'r', linestyle= '-.')
  2. plt.plot(data)


  • fontdict()函数;也可以来办同样的事情。

 
 
  1. font = { 'family' : 'monospace',
  2. 'weight' : 'bold',
  3. 'size' : 'larger',
  4. 'color' : "r"
  5. }
  6. plt.scatter(range( 50), data)
  7. plt.xlabel( "number", fontdict=font)


font()字典中主要存在这么几类键:

font.family ;一共有5种设置: serif sans-serif cursive antasy  monospace

font.style  ;一种有3种设置:normal italic oblique

font.variant  ;一共有2种设置:normal or small-caps

font.weight ;一共有4种设置:normal, bold, bolder, lighter

font.stretch ;一共有13种设置:

ultra-condensed, extra-condensed, condensed, semi-condensed, normal, semi-expanded, expanded, extra-expanded, ultra-expanded, wider, and narrower. font.size ;默认值是10pt

  • plt.setp()函数;也是可以设置线的粗细以及颜色,还可以设置坐标轴的方向,位置。
例如:

setp(lines, 'linewidth', 2, 'color', 'r')
 
 
借用帮助文档上的一个例子:


 
 
  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. data = { 'Barton LLC': 109438.50,
  4. 'Frami, Hills and Schmidt': 103569.59,
  5. 'Fritsch, Russel and Anderson': 112214.71,
  6. 'Jerde-Hilpert': 112591.43,
  7. 'Keeling LLC': 100934.30,
  8. 'Koepp Ltd': 103660.54,
  9. 'Kulas Inc': 137351.96,
  10. 'Trantow-Barrows': 123381.38,
  11. 'White-Trantow': 135841.99,
  12. 'Will LLC': 104437.60}
  13. group_data = list(data.values())
  14. group_names = list(data.keys())
  15. group_mean = np.mean(group_data)
  16. fig, ax = plt.subplots()
  17. ax.barh(group_names, group_data)
  18. labels = ax.get_xticklabels()
  19. plt.setp(labels, rotation= 45, horizontalalignment= 'right')
  20. ax.set(xlim=[ -10000, 140000], xlabel= 'Total Revenue', ylabel= 'Company',
  21. title= 'Company Revenue')



可以看到x轴坐标斜向45°旋转了,整个图片变得更加美观了。为了对数据更加一步分析,做下面操作:


 
 
  1. def currency(x, pos):
  2. """The two args are the value and tick position"""
  3. if x >= 1e6:
  4. s = '${:1.1f}M'.format(x* 1e-6)
  5. else:
  6. s = '${:1.0f}K'.format(x* 1e-3)
  7. return s
  8. formatter = FuncFormatter(currency)
  9. fig, ax = plt.subplots(figsize=( 6, 8))
  10. ax.barh(group_names, group_data)
  11. labels = ax.get_xticklabels()
  12. plt.setp(labels, rotation= 45, horizontalalignment= 'right')
  13. ax.set(xlim=[ -10000, 140000], xlabel= 'Total Revenue', ylabel= 'Company',
  14. title= 'Company Revenue')
  15. ax.xaxis.set_major_formatter(formatter)



 
 
  1. fig, ax = plt.subplots(figsize=( 8, 8))
  2. ax.barh(group_names, group_data)
  3. labels = ax.get_xticklabels()
  4. plt.setp(labels, rotation= 45, horizontalalignment= 'right')
  5. # 以所有收益的平均值画一条垂直线,看哪些公司是超越平均收益的
  6. ax.axvline(group_mean, ls= '--', color= 'r')
  7. # 标注新成立的公司
  8. for group in [ 3, 5, 8]:
  9. ax.text( 145000, group, "New Company", fontsize= 10,
  10. verticalalignment= "center")
  11. # 将标题移动一点,与图片保持一点距离。
  12. ax.title.set(y= 1.05)
  13. ax.set(xlim=[ -10000, 140000], xlabel= 'Total Revenue', ylabel= 'Company',
  14. title= 'Company Revenue')
  15. ax.xaxis.set_major_formatter(formatter)
  16. ax.set_xticks([ 0, 25e3, 50e3, 75e3, 100e3, 125e3])
  17. plt.show()



现在好了,可以直观的看出哪些公司是新成立得,同时哪些公司的收益是超越平均水平的。对之后的数据分析和统计都是有非常大的帮助的。

今天先总结这么多,后续总结持续中。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值