python绘图的包大家应该不会陌生,但是,对图的常规设置不一定会知道(其实自己也是才知道的),比如:坐标轴的字体大小、颜色设置;标题的字体颜色大小设置;线的粗细、颜色;图片风格的设置等。了解这些常规设置必定会让图片更加美观。
下面就具体来说说matplotlib中有哪些常规设置。
我主要总结了这几个函数:
- plt.style.use()函数;可以对图片的整体风格进行设置。可以通过plt.style.availabel知道一共有多少种主题。
-
import matplotlib.pyplot
as plt
-
import numpy
as np
-
import pandas
as pd
-
import matplotlib
as mpl
-
print plt.style.availabel
我们试用其中两个主题。
-
plt.style.use(
"fivethirtyeight")
-
data = np.random.randn(
50)
-
plt.scatter(range(
50), data)
-
with plt.style.context((
'dark_background')):
-
plt.plot(np.sin(np.linspace(
0,
2 * np.pi)),
'r-o')
# "r-o"表示红色的点用线连接起来。
-
plt.show()
- mpl.rcParams()函数;这个函数可以设置图片的坐标轴以及标题的字体大小、颜色、宽度等。同时,也可以用mpl.rcParams.keys()进行查看有哪些设置。
-
mpl.rcParams[
'xtick.labelsize'] =
16
-
mpl.rcParams[
"ytick.color"] =
'b'
-
plt.plot(range(
50), data,
'g^')
-
plt.show()
这张图就通过rcParams()函数设置了y轴的字体颜色,x轴的字体大小。同时,将点的marker变成了三角形、颜色变为了绿色。
- mpl.rc()函数;它可以用来设置线的粗细、风格、颜色等。
-
mpl.rc(
'lines', linewidth=
4, color=
'r', linestyle=
'-.')
-
plt.plot(data)
- fontdict()函数;也可以来办同样的事情。
-
font = {
'family' :
'monospace',
-
'weight' :
'bold',
-
'size' :
'larger',
-
'color' :
"r"
-
}
-
plt.scatter(range(
50), data)
-
plt.xlabel(
"number", fontdict=font)
font()字典中主要存在这么几类键:
font.family ;一共有5种设置: serif sans-serif cursive antasy monospace
font.style ;一种有3种设置:normal italic oblique
font.variant ;一共有2种设置:normal or small-caps
font.weight ;一共有4种设置:normal, bold, bolder, lighter
font.stretch ;一共有13种设置:
ultra-condensed, extra-condensed, condensed, semi-condensed, normal, semi-expanded, expanded, extra-expanded, ultra-expanded, wider, and narrower. font.size ;默认值是10pt
- plt.setp()函数;也是可以设置线的粗细以及颜色,还可以设置坐标轴的方向,位置。
setp(lines, 'linewidth', 2, 'color', 'r')
借用帮助文档上的一个例子:
-
import numpy
as np
-
import matplotlib.pyplot
as plt
-
data = {
'Barton LLC':
109438.50,
-
'Frami, Hills and Schmidt':
103569.59,
-
'Fritsch, Russel and Anderson':
112214.71,
-
'Jerde-Hilpert':
112591.43,
-
'Keeling LLC':
100934.30,
-
'Koepp Ltd':
103660.54,
-
'Kulas Inc':
137351.96,
-
'Trantow-Barrows':
123381.38,
-
'White-Trantow':
135841.99,
-
'Will LLC':
104437.60}
-
group_data = list(data.values())
-
group_names = list(data.keys())
-
group_mean = np.mean(group_data)
-
fig, ax = plt.subplots()
-
ax.barh(group_names, group_data)
-
labels = ax.get_xticklabels()
-
plt.setp(labels, rotation=
45, horizontalalignment=
'right')
-
ax.set(xlim=[
-10000,
140000], xlabel=
'Total Revenue', ylabel=
'Company',
-
title=
'Company Revenue')
可以看到x轴坐标斜向45°旋转了,整个图片变得更加美观了。为了对数据更加一步分析,做下面操作:
-
def currency(x, pos):
-
"""The two args are the value and tick position"""
-
if x >=
1e6:
-
s =
'${:1.1f}M'.format(x*
1e-6)
-
else:
-
s =
'${:1.0f}K'.format(x*
1e-3)
-
return s
-
formatter = FuncFormatter(currency)
-
fig, ax = plt.subplots(figsize=(
6,
8))
-
ax.barh(group_names, group_data)
-
labels = ax.get_xticklabels()
-
plt.setp(labels, rotation=
45, horizontalalignment=
'right')
-
-
ax.set(xlim=[
-10000,
140000], xlabel=
'Total Revenue', ylabel=
'Company',
-
title=
'Company Revenue')
-
ax.xaxis.set_major_formatter(formatter)
-
fig, ax = plt.subplots(figsize=(
8,
8))
-
ax.barh(group_names, group_data)
-
labels = ax.get_xticklabels()
-
plt.setp(labels, rotation=
45, horizontalalignment=
'right')
-
-
# 以所有收益的平均值画一条垂直线,看哪些公司是超越平均收益的
-
ax.axvline(group_mean, ls=
'--', color=
'r')
-
-
# 标注新成立的公司
-
for group
in [
3,
5,
8]:
-
ax.text(
145000, group,
"New Company", fontsize=
10,
-
verticalalignment=
"center")
-
-
# 将标题移动一点,与图片保持一点距离。
-
ax.title.set(y=
1.05)
-
ax.set(xlim=[
-10000,
140000], xlabel=
'Total Revenue', ylabel=
'Company',
-
title=
'Company Revenue')
-
ax.xaxis.set_major_formatter(formatter)
-
ax.set_xticks([
0,
25e3,
50e3,
75e3,
100e3,
125e3])
-
plt.show()
现在好了,可以直观的看出哪些公司是新成立得,同时哪些公司的收益是超越平均水平的。对之后的数据分析和统计都是有非常大的帮助的。
今天先总结这么多,后续总结持续中。。。