本文主要针对ResNet-50对深度残差网络进行一个理解和分析
ResNet已经被广泛运用于各种特征提取应用中,当深度学习网络层数越深时,理论上表达能力会更强,但是CNN网络达到一定的深度后,再加深,分类性能不会提高,而是会导致网络收敛更缓慢,准确率也随着降低,即使把数据集增大,解决过拟合的问题,分类性能和准确度也不会提高。Kaiming大神等人发现残差网络能够解决这一问题。这里首先放上一张ResNet的各种网络结构图(图1):
重点说明一下ResNet-50,可以看到图1中所示,ResNet-50经过了4个Block,每一个Block中分别有3,4,6,3个Bottleneck,这里zyyupup给出了一张自己制作的网络图,我觉得这张图足够解释清楚ResNet-50(图2):
现在来看一下这个网络图,
ResNet-50网络理解
最新推荐文章于 2025-03-07 11:16:22 发布