- libcurl 是一个功能完善、稳定可靠的应用层通信库,最常用的就是 HTTP 协议;
- cpr 是对 libcurl 的 C++ 封装,接口简单易用;
- libcurl 和 cpr 都只能作为客户端来使用,不能编写服务器端应用;
- ZMQ 是一个高级的网络通信库,支持多种通信模式,可以把消息队列功能直接嵌入应用程序,搭建出高效、灵活、免管理的分布式系统。
我们知道了数据或者对象的序列化,现在,我们手里有了这些跨语言、跨平台的通用数据,该怎么与外部通信交换呢?
你肯定首先想到的就是 Socket 网络编程,使用 TCP/IP 协议栈收发数据,这样不仅可以在本地的进程间通信,也可以在主机、机房之间异地通信。
大方向上这是没错的,但你也肯定知道,原生的 Socket API 非常底层,要考虑很多细节,比如 TIME_WAIT、CLOSE_WAIT、REUSEADDR 等,如果再加上异步就更复杂了。
虽然你可能看过、学过不少这方面的资料,对如何处理这些问题“胸有成竹”,但无论如何,像 Socket 建连 / 断连、协议格式解析、网络参数调整等,都要自己动手做,想要“凭空”写出一个健壮可靠的网络应用程序还是相当麻烦的。
所以,今天我就来谈谈 C++ 里的几个好用的网络通信库:libcurl、cpr 和 ZMQ,让你摆脱使用原生 Socket 编程的烦恼。
libcurl:高可移植、功能丰富的通信库
第一个要说的库是 libcurl,它来源于著名的curl 项目,也是 curl 的底层核心。
libcurl 经过了多年的开发和实际项目的验证,非常稳定可靠,拥有上百万的用户,其中不乏 Apple、Facebook、Google、Netflix 等大公司。
它最早只支持 HTTP 协议,但现在已经扩展到支持所有的应用层协议,比如 HTTPS、FTP、LDAP、SMTP 等,功能强大。
libcurl 使用纯 C 语言开发,兼容性、可移植性非常好,基于 C 接口可以很容易写出各种语言的封装,所以 Python、PHP 等语言都有 libcurl 相关的库。
因为 C++ 兼容 C,所以我们也可以在 C++ 程序里直接调用 libcurl 来收发数据。在使用 libcurl 之前,你需要用 apt-get 或者 yum 等工具安装开发库:
apt-get install libcurl4-openssl-dev
虽然 libcurl 支持很多协议,但最常用的还是 HTTP。所以接下来,我也主要介绍 libcurl 的 HTTP 使用方法,这样对其他的协议你也可以做到“触类旁通”。
libcurl 的接口可以粗略地分成两大类:easy 系列和 multi 系列。其中,easy 系列是同步调用,比较简单;multi 系列是异步的多线程调用,比较复杂。通常情况下,我们用 easy 系列就足够了。
libcurl 的接口可以粗略地分成两大类:easy 系列和 multi 系列。其中,easy 系列是同步调用,比较简单;multi 系列是异步的多线程调用,比较复杂。通常情况下,我们用 easy 系列就足够了。
使用 libcurl 收发 HTTP 数据的基本步骤有 4 个:
- 使用 curl_easy_init() 创建一个句柄,类型是 CURL*。但我们完全没有必要关心句柄的类型,直接用 auto 推导就行。
- 使用 curl_easy_setopt() 设置请求的各种参数,比如请求方法、URL、header/body 数据、超时、回调函数等。这是最关键的操作。
- 使用 curl_easy_perform() 发送数据,返回的数据会由回调函数处理。
- 使用 curl_easy_cleanup() 清理句柄相关的资源,结束会话。
下面我用个简短的例子来示范一下这 4 步:
#include <curl/curl.h> // 包含头文件
auto curl = curl_easy_init(); // 创建CURL句柄
assert(curl);
curl_easy_setopt(curl, CURLOPT_URL, "http://nginx.org"); // 设置请求URI
auto res = curl_easy_perform(curl); // 发送数据
if (res != CURLE_OK) { // 检查是否执行成功
cout << curl_easy_strerror(res) << endl;
}
curl_easy_cleanup(curl); // 清理句柄相关的资源
这段代码非常简单,重点是调用 curl_easy_setopt() 设置了 URL,请求 Nginx 官网的首页,其他的都使用默认值即可。
由于没有设置你自己的回调函数,所以 libcurl 会使用内部的默认回调,把得到的 HTTP 响应数据输出到标准流,也就是直接打印到屏幕上。
这个处理结果显然不是我们所期待的,所以如果想要自己处理返回的 HTTP 报文,就得写一个回调函数,在里面实现业务逻辑。
因为 libcurl 是 C 语言实现的,所以回调函数必须是函数指针。
不过,C++11 允许你写 lambda 表达式,这利用了一个特别规定:无捕获的 lambda 表达式可以显式转换成一个函数指针。注意一定要是“无捕获”,也就是说 lambda 引出符“[]”必须是空的,不能捕获任何外部变量。
所以,只要多做一个简单的转型动作,你就可以用 lambda 表达式直接写 libcurl 的回调,还是熟悉的函数式编程风格:
// 回调函数的原型
size_t write_callback(char* , size_t , size_t , void* );
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, // 设置回调函数
(decltype(&write_callback)) // decltype获取函数指针类型,显式转换
[](char *ptr, size_t size, size_t nmemb, void *userdata)// lambda
{
cout << "size = " << size * nmemb << endl; // 简单的处理
return size * nmemb; // 返回接收的字节数
}
);
libcurl 的用法大概就是这个样子了,开头的准备和结尾的清理工作都很简单,关键的就是 curl_easy_setopt() 这一步的参数设置。
我们必须通过查文档知道该用哪些标志宏,写一些单调重复的代码。你可能想到了,可以自己用 C++ 包装出一个类,就能够少敲点键盘。但不要着急,因为我们有一个更好的选择,就是 cpr。
cpr:更现代、更易用的通信库
cpr 是对 libcurl 的一个 C++11 封装,使用了很多现代 C++ 的高级特性,对外的接口模仿了 Python 的 requests 库,非常简单易用。你可以从GitHub上获取 cpr 的源码,再用 cmake 编译安装:
git clone git@github.com:whoshuu/cpr.git
cmake . -DUSE_SYSTEM_CURL=ON -DBUILD_CPR_TESTS=OFF
make && make install
和 libcurl 相比,cpr 用起来真的是太轻松了,不需要考虑什么初始化、设置参数、清理等杂事,一句话就能发送 HTTP 请求:
#include <cpr/cpr.h> // 包含头文件
auto res = cpr::Get( // GET请求
cpr::Url{"http://openresty.org"} // 传递URL
);
你也不用写回调函数,HTTP 响应就是函数的返回值,用成员变量 url、header、status_code、text 就能够得到报文的各个组成部分:
cout << res.elapsed << endl; // 请求耗费的时间
cout << res.url << endl; // 请求的URL
cout << res.status_code << endl; // 响应的状态码
cout << res.text.length() << endl; // 响应的body数据
for(auto& x : res.header) { // 响应的头字段
cout << x.first << "=>" // 类似map的结构
<< x.second << endl;
}
在 cpr 里,HTTP 协议的概念都被实现为相应的函数或者类,内部再转化为 libcurl 操作,主要的有:
- GET/HEAD/POST 等请求方法,使用同名的 Get/Head/Post 函数;
- URL 使用 Url 类,它其实是 string 的别名;
- URL 参数使用 Parameters 类,KV 结构,近似 map;
- 请求头字段使用 Header 类,它其实是 map 的别名,使用定制的函数实现了大小写无关比较;
- Cookie 使用 Cookies 类,也是 KV 结构,近似 map;
- 请求体使用 Body 类;
- 超时设置使用 Timeout 类。
这些函数和类的用法都非常自然、符合思维习惯,而且因为可以使用 C++11 的花括号“{}”初始化语法,如果你以前用过 Python reqeusts 库的话一定会感到很亲切:
const auto url = "http://openresty.org"s; // 访问的URL
auto res1 = cpr::Head( // 发送HEAD请求
cpr::Url{url} // 传递URL
);
auto res2 = cpr::Get( // 发送GET请求
cpr::Url{url}, // 传递URL
cpr::Parameters{ // 传递URL参数
{"a", "1"}, {"b", "2"}}
);
auto res3 = cpr::Post( // 发送POST请求
cpr::Url{url}, // 传递URL
cpr::Header{ // 定制请求头字段
{"x", "xxx"},{"expect",""}},
cpr::Body{"post data"}, // 传递body数据
cpr::Timeout{200ms} // 超时时间
);
cpr 也支持异步处理,但它内部没有使用 libcurl 的 multi 接口,而是使用了标准库里的 future 和 async(异步),和 libcurl 的实现相比,既简单又好理解。
异步接口与同步接口的调用方式基本一样,只是名字多了个“Async”的后缀,返回的是一个 future 对象。你可以调用 wait() 或者 get() 来获取响应结果:
auto f = cpr::GetAsync( // 异步发送GET请求
cpr::Url{"http://openresty.org"}
);
auto res = f.get(); // 等待响应结果
cout << res.elapsed << endl; // 请求耗费的时间
看了上面这些介绍,你是不是有些心动了。说实话,我原来在 C++ 里也是一直用 libcurl,也写过自己的包装类,直到发现了 cpr 这个“大杀器”,就立即“弃暗投明”了。相信有了 cpr,你今后在 C++ 里写 HTTP 应用就不再是痛苦,而是一种享受了。
ZMQ:高效、快速、多功能的通信库
libcurl 和 cpr 处理的都是 HTTP 协议,虽然用起来很方便,但协议自身也有一些限制,比如必须要一来一回,必须点对点直连,在超大数据量通信的时候就不是太合适。
还有一点,libcurl 和 cpr 只能充当 HTTP 的客户端,如果你想写服务器端程序,这两个工具就完全派不上用场。
所以,我们就需要一个更底层、更灵活的网络通信工具,它应该能够弥补 libcurl 和 cpr 的不足,不仅快速高效,还能同时支持客户端和服务器端编程。
这就是我要说的第三个库:ZQM
其实,ZMQ 不仅是一个单纯的网络通信库,更像是一个高级的异步并发框架。
从名字上就可以看出来,Zero Message Queue——零延迟的消息队列,意味着它除了可以收发数据外,还可以用作消息中间件,解耦多个应用服务之间的强依赖关系,搭建高效、有弹性的分布式系统,从而超越原生的 Socket。
作为消息队列,ZMQ 的另一大特点是零配置零维护零成本,不需要搭建额外的代理服务器,只要安装了开发库就能够直接使用,相当于把消息队列功能直接嵌入到你的应用程序里:
apt-get install libzmq3-dev
ZMQ 是用 C++ 开发的,但出于兼容的考虑,对外提供的是纯 C 接口。
不过它也有很多 C++ 封装,这里我选择的是自带的cppzmq,虽然比较简单,但也基本够用了。
由于 ZMQ 把自身定位于更高层次的“异步消息队列”,所以它的用法就不像 Socket、HTTP 那么简单直白,而是定义了 5 种不同的工作模式,来适应实际中常见的网络通信场景。
我来大概说一下这 5 种模式:
- 原生模式(RAW),没有消息队列功能,相当于底层 Socket 的简单封装;
- 结对模式(PAIR),两个端点一对一通信;
- 请求响应模式(REQ-REP),也是两个端点一对一通信,但请求必须有响应;
- 发布订阅模式(PUB-SUB),一对多通信,一个端点发布消息,多个端点接收处理;
- 管道模式(PUSH-PULL),或者叫流水线,可以一对多,也可以多对一。
前四种模式类似 HTTP 协议、Client-Server 架构,很简单,就不多说了。我拿我在工作中比较常用的管道模式来给你示范一下 ZMQ 的用法,它非常适合进程间无阻塞传送海量数据,也有点 map-reduce 的意思。
在 ZMQ 里有两个基本的类。
第一个是 context_t,它是 ZMQ 的运行环境。使用 ZMQ 的任何功能前,必须要先创建它。
第二个是 socket_t,表示 ZMQ 的套接字,需要指定刚才说的那 5 种工作模式。注意它与原生 Socket 没有任何关系,只是借用了名字来方便理解。
下面的代码声明了一个全局的 ZMQ 环境变量,并定义了一个 lambda 表达式,生产 ZMQ 套接字:
const auto thread_num = 1; // 并发线程数
zmq::context_t context(thread_num); // ZMQ环境变量
auto make_sock = [&](auto mode) // 定义一个lambda表达式
{
return zmq::socket_t(context, mode); // 创建ZMQ套接字
};
和原生 Socket 一样,ZMQ 套接字也必须关联到一个确定的地址才能收发数据,但它不仅支持 TCP/IP,还支持进程内和进程间通信,这在本机交换数据时会更高效:
- TCP 通信地址的形式是“tcp://…”,指定 IP 地址和端口号;
- 进程内通信地址的形式是“inproc://…”,指定一个本地可访问的路径;
- 进程间通信地址的形式是“ipc://…”,也是一个本地可访问的路径。
用 bind()/connect() 这两个函数把 ZMQ 套接字连接起来之后,就可以用 send()/recv() 来收发数据了,看一下示例代码吧:
const auto addr = "ipc:///dev/shm/zmq.sock"s; // 通信地址
auto receiver = [=]() // lambda表达式接收数据
{
auto sock = make_sock(ZMQ_PULL); // 创建ZMQ套接字,拉数据
sock.bind(addr); // 绑定套接字
assert(sock.connected());
zmq::message_t msg;
sock.recv(&msg); // 接收消息
string s = {msg.data<char>(), msg.size()};
cout << s << endl;
};
auto sender = [=]() // lambda表达式发送数据
{
auto sock = make_sock(ZMQ_PUSH); // 创建ZMQ套接字,推数据
sock.connect(addr); // 连接到对端
assert(sock.connected());
string s = "hello zmq";
sock.send(s.data(), s.size()); // 发送消息
};
这段代码实现了两个最基本的客户端和服务器,看起来好像没什么特别的。
但你应该注意到,使用 ZMQ 完全不需要考虑底层的 TCP/IP 通信细节,它会保证消息异步、安全、完整地到达服务器,让你关注网络通信之上更有价值的业务逻辑。
ZMQ 的用法就是这么简单,但想要进一步发掘它的潜力,处理大流量的数据还是要去看它的文档,选择合适的工作模式,再仔细调节各种参数。
接下来,我再给你分享两个实际工作中会比较有用的细节吧。
一个是 ZMQ 环境的线程数。它的默认值是 1,太小了,适当增大一些就可以提高 ZMQ 的并发处理能力。
我一般用的是 4~6,具体设置为多少最好还是通过性能测试来验证下。
另一个是收发消息时的本地缓存数量,ZMQ 的术语叫 High Water Mark。如果收发的数据过多,数量超过 HWM,ZMQ 要么阻塞,要么丢弃消息。
HWM 需要调用套接字的成员函数 setsockopt() 来设置,注意收发使用的是两个不同的标志:
sock.setsockopt(ZMQ_RCVHWM, 1000); // 接收消息最多缓存1000条
sock.setsockopt(ZMQ_SNDHWM, 100); // 发送消息最多缓存100条
我们把 HWM 设置成多大都可以,比如我就曾经在一个高并发系统里用过 100 万以上的值,不用担心,ZMQ 会把一切都处理得很好。
关于 ZMQ 就暂时说到这里,它还有很多强大的功能,你可以阅读官网上的教程和指南,里面非常详细地讨论了 ZMQ 的各种模式和要点。