HashMap原理详解

一、HashMap集合简介

  • HashMap基于哈希丟的Map接口实现,是以key-value存锗形式存在,即主要用来存放键值对。HashMap的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null,此外,HashMap中的映射不是有序的。

  • jdk1.8之前HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突(两个对象调用的hashCode方法计算的哈希值一致导致计算的教组索引值相同)而存在的(“拉链法”解决冲突)。jdk1.8以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(或者红黑树的边界值,默认为8)并且当前数组的长度大于64时,此时此索引位璽上的所有数据改为使用红黑树存储。

  • 补充:将链表转换成红黑树前会判断,即便阈值大于8,但是数组长度小于64,此时并不会将链表变为红黑树,而是选择逬行数组扩容。

    这样做的目的是因为数组比较小,尽量避开红黑树结构,这种情况下变为红黑树结构,反而会降低效率,因为红黑树需要逬行左旋,右旋,变色这些操作来保持平衡。同时数组长度小于64时,搜索时间相对要快些。所以结上所述为了提高性能和减少搜索时间,底层阈值大于8并且数组长度大于64时,链表才转换为红黑树,具体可以参考 treeifyBin() 方法。

    当然虽然增了红黑树作为底层数据结构,结构变得复杂了,但是阈值大于8并且数组长度大于64时,链表转换为红黑树时,效率也变的更高效。

  • 小结:

    • 特点:
      1.存储无序的

      2.键和值位置都可以是null,但是键位置只能是一个null

      3.键位置是唯一的,底层的数据结构控制的

      4.jdk1.8前数据结构是链表+数组,jdk1.8之后是链表+数组+红黑树

      5.阈值(边界值)>8并且数组长度大于64,才将链表转换为红黑树,变为红黑树的目的是为了高效的查询。

二、HashMap集合底层的数据结构

2.1 数据结构概念

数据结构是计算机存储、组织数据的方式。数据结构是指互相之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高效的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。

2.2 HashMap底层的数据结构存储数据的过程

存储过程如下所示:

HashMap<String, Integer> map = new HashMap<>();
map.put("柳岩", 18);
map.put("杨幂", 28);
map.put("刘德华", 40);
map.put("柳岩", 20);

 
 
  • 1
  • 2
  • 3
  • 4
  • 5

输出结果:

{杨幂=28, 柳岩=20, 刘德华=40}

 
 
  • 1
  1. HashMap<String, Integer> map = new HashMap<>();
    当创建HashMap集合对象的时候,在jdk8前,构造方法中创建一个长度是16的 Entry[] table 用来存储键值对数据的。在jdk8以后不是在HashMap的构造方法底层创建数组了,是在第一次调用put方法时创建的数组 Node[] table 用来存储键值对数据。

  2. 假设向哈希表中存箱<柳岩,18>数据,根据柳岩调用String类中重写之后的 hashCode() 方法计算出值,然后结合数组长度采用某种算法计算出向Node数组中存储数据的空间的索引值。如果计算出的索引空间没有数据,则直接将<柳岩,18>存储到数组中。(举例:计算出的索引是3)

  3. 向哈希表中存储数据<刘德华,40>,假设算出的 hashCode() 方法结合数祖长度计算出的索引值也是3,那么此时数组空间不是null,此时底层会比较柳岩和刘德华的hash值是否一致,如果不一致,则在空间上划出一个结点来存储键值对数据对<刘德华,40>,这种方式称为拉链法。

  4. 假设向哈希表中存储数据<柳岩,20>,那么首先根据柳岩调用 hashCode() 方法结合数组长度计算出索引肯定3,此时比较后存储的数据柳岩和已经存在的数据的hash值是否相等,如果hash值相等,此时发生哈希碰撞。那么底层会调用柳岩所属类 String 中的 equals() 方法比较两个内容是否相等:
    相等:将后添加的数据的value覆盖之前的value。
    不相等:继续向下和其他的数据的key进行比较,如果都不相等,则划出一个结点存储数据,如果结点长度即链表长度大于阈值8并且数组长度大于64则将链表变为红黑树。
    存储数据的过程

  5. 在不断的添加数据的过程中,会涉及到扩容问题,当超出阈值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的2倍,并将原有的数据复制过来。

  6. 综上描述,当位于一个表中的元素较多,即hash值相等但是内容不相等的元素较多时,通过key值依次查找的效率较低。而jdk1.8中,哈希表存储采用数组+链表+红黑树实现,当链表长度(阈值)超过8且当前数组的长度大于64时,将链表转换为红黑树,这样大大减少了查找时间。jdk8在哈希表中引入红黑树的原因只是为了查找效率更高。

    简单的来说,哈希表是由数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的。如下图所示:
    哈希表

  7. 但是这样的话问题来了,传统hashMap的缺点,1.8为什么引入红黑树?这样结构的话不是更麻烦了吗,为何阈值大于8换成红黑树?

    jdk1.8以前HashMap的实现是数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当HashMap中有大量的元素都存放到同一个桶中时,这个桶下有一条长长的链表,这个时候HashMap就相当于一个单链表,假如单链表有n个元素,遍历的时间复杂度就是O(n),完全失去了它的优势。

    针对这种情况,jdk1.8中引入了红黑树(查找时间复杂度为O(logn))来优化这个问题。当链表长度很小的时候,即使遍历,速度也非常快,但是当链表长度不断变长,肯定会对查询性能有一定的影响,所以才需要转成树。

  8. 总结:

在这里插入图片描述
说明:

  • size表示HashMap中键值对的实时数量,注意这个不等于数组的长度。
  • threshold(临界值)= capacity(容量)* loadFactor(负载因子)。这个值是当前已占用数组长度的最大值。size超过这个值就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。
2.3 面试题
  1. HashMap中hash函数是怎么实现的?还有哪些hash函数的实现方式?
    答:对于key的hashCode做hash操作,无符号右移16位然后做异或运算。还有平方取中法,伪随机数法和取余数法。这三种效率都比较低。而无符号右移16位异或运算效率是最高的。

  2. 当两个对象的hashcode相等时会怎么样?
    答:会产生哈希碰撞。若key值内容相同则替换旧的value,不然连接到链表后面,链表长度超过阈值8就转换为红黑树存储。

  3. 何时发生哈希碰撞和什么是哈希碰撞,如何解决哈希碰撞?
    答:只要两个元素的key计算的哈希码值相同就会发生哈希碰撞。jdk8之前使用链表解决哈希碰撞。jdk8之后使用链表+红黑树解决哈希碰撞。

  4. 如果两个键的hashcode相同,如何存储键值对?
    答:通过equals比较内容是否相同。相同:则新的value覆盖之前的value。不相同:则将新的键值对添加到哈希表中。

三、HashMap继承关系

HashMap继承关系如下图所示:

继承关系
说明:

  • Cloneable空接口,表示可以克隆。创建并返回HashMap对象的一个副本。
  • Serializable序列化接口。属于标记性接口。HashMap对象可以被序列化和反序列化。
  • AbstractMap父类提供了 Map实现接口。以最大限度地减少实现此接口所需的工作。

补充:

通过上述继承关系我们发现一个很奇怪的现象,就是HashMap已经继承了AbstractMap而AbstractMap类实现了Map接口,那为什么HashMap还要在实现Map接口呢?同样在ArrayList中LinkedLis冲都是这种结构。

据java集合框架的创始人 Josh Bloch 描述,这样的写法是一个失误。在java集合框架中,类似这样的写法很多,最幵始写java集合框架的时候,他认为这样写,在某些地方可能是有价值的,直到他意识到错了。显然的,jdk的维护者,后来不认为这个小小的失误值得去修改,所以就这样存在下来了。

四、HashMap集合类的成员

4.1 成员变量
  1. 序列化版本号
private static final long serialVersionUID = 362498820763181265L;

 
 
  • 1
  1. 集合的初始化容量(必须是2的n次幂)
// 默认的初始容量是16	1 << 4 相当于 1*2的4次方
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

 
 
  • 1
  • 2

问题:为什么必须是2的n次幂?如果输入值不是2的幂比如10会怎么样?

HashMap构造方法还可以指定集合的初始化容量大小:

HashMap(int initialCapacity) // 构造一个带指定初始容量和默认负载因子(0.75)的空HashMap。

 
 
  • 1

根据上述讲解我们已经知道,当向HashMap中添加一个元素的时候,需要根据key的hash值,去确定其在数组中的具体位置。HashMap为了存取高效,减少碰撞,就是要尽量把数据分配均匀,每个链表长度大致相同,这个实现就在把数据存到哪个链表中的算法。

这个算法实际就是取模,hash%length,计算机中直接求余效率不如位移运算。所以源码中做了优化,使用 hash&(length-1),而实际上 hash%length 等于 hash&(length-1) 的前提是length是2的n次幂。

例如长度为8的时候,3 & (8 - 1) = 3,2 & (8-1) = 2,不同位置上,不碰撞。

/**
 * Returns a power of two size for the given target capacity.
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

说明:
当在实例化HashMap实例时,如果给定了initialCapacity,由于HashMap的capacity必须都是2的幂,因此这个方法用于找到大于等于initialCapacity的最小的2的幂。

分析:

  1. int n = cap - 1;
    防止cap已经是2的幂。如果cap已经是2的幂,又没有这个减1操作,则执行完后面的几条无符号操作之后,返回的capacity将是这个cap的2倍。

  2. 如果n这时为0了(经过了cap - 1后),则经过后面的几次无符号右移依然是0,最后返回的capacity是1(最后有个n + 1的操作)。

  3. 注意:容量最大也就是32bit的正数,因此最后 n |= n >>> 16; 最多也就32个1(但是这已经是负数了,在执行tableSizeFor之前,对initialCapacity做了判断,如果大于MAXIMUM_CAPACITY(2 ^ 30),则取MAXIMUM_CAPACITY。如果等于MAXIMUM_CAPACITY,会执行位移操作。所以这里面的位移操作之后,最大30个1,不会大于等于MAXIMUM_CAPACITY。30个1,加1后得2 ^ 30)。

    完整例子:

完整例子
注意:得到的这个capacity却被赋值给了threshold。

this.threshold = tableSizeFor(initialCapacity);

 
 
  • 1
  1. 默认的负载因子,默认值是0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;

 
 
  • 1
  1. 集合最大容量
 static final int MAXIMUM_CAPACITY = 1 << 30; // 2的30次幂

 
 
  • 1
  1. 当链表的值超过8则会转为红黑树(jdk1.8新增)
// 当桶(bucket)上的结点数大于这个值时会转为红黑树
static final int TREEIFY_THRESHOLD = 8;

 
 
  • 1
  • 2

问题:为什么Map桶中结点个数超过8才转为红黑树?

8这个阈值定义在HashMap中,针对这个成员变量,在源码的注释中只说明了8是bin(bin就是bucket桶)从链表转成树的阈值,但是并没有说明为什么是8;

在HashMap中有一段注释说明;

Because TreeNodes are about twice the size of regular nodes, we use them only when bins contain enough nodes to warrant use (see TREEIFY_THRESHOLD). And when they become too small (due to removal or resizing) they are converted back to plain bins.  In usages with well-distributed user hashCodes, tree bins are rarely used.  Ideally, under random hashCodes, the frequency of nodes in bins follows a Poisson distribution (http://en.wikipedia.org/wiki/Poisson_distribution) with a parameter of about 0.5 on average for the default resizing
threshold of 0.75, although with a large variance because of resizing granularity. Ignoring variance, the expected occurrences of list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The first values are:

翻译:因为树结点的大小大约是普通结点的两倍,所以我们只在箱子包含足够的结点时才使用树结点(参见
TREEIFY_THRESHOLD)。当它们变得太小(由于删除或调整大小)时,就会被转换回普通的桶。在使用分布良好的用户 hashCode 时,很少使用树箱。理想情况下,在随机哈希码下,箱子中结点的频率服从泊松分布
(http://en.wikipedia.org/wiki/Poisson_distribution) ,默认调整阈值为0.75,平均参数约为0.5,尽管由
于调整粒度的差异很大。忽略方差,列表大小k的预朗出现次数是(exp(-0.5) * pow(0.5, k) / factorial(k))
第一个值是:

0: 0.60653066
1: 0.30326533
2: 0.07581633
3: 0.01263606
4: 0.00157952
5: 0.00015795
6: 0.00001316
7: 0.00000094
8: 0.00000006
more: less than 1 in ten million

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

TreeNodes占用空间是普通Nodes的两倍,所以只有当bin包含足够多的结点时才会转成TreeNodes,而是否足够多就是由TREEIFY_THRESH〇LD的值决定的。当bin中结点数变少时,又会转成普通的bin。并且我们查看源码的时候发现,链表长度达到8就转成红黑树,当长度降到6就转成普通bin。

这样就解释了为什么不是一开始就将其转换为TreeNodes,而是需要一定结点数才转为TreeNodes,说白了就是权衡空间和时间。

这段内容还说到:当hashCode离散性很好的时候,树型bin用到的概率非常小,因为数据均匀分布在每个bin中,几乎不会有bin中链表长度会达到阈值。但是在随机hashCode下,离散性可能会变差,然而jdk又不能阻止用户实现这种不好的hash算法,因此就可能导致不均匀的数据分布。不理想情况下随机hashCode算法下所有bin中结点的分布频率会遵循泊松分布,我们可以看到,一个bin中链表长度达到8个元素的槪率为0.00000006,几乎是不可能事件。所以,之所以选择8,不是随便決定的,而是裉据概率统计决定的。甶此可见,发展将近30年的java每一项改动和优化都是非常严谨和科学的。

也就是说:选择8因为符合泊松分布,超过8的时候,概率已经非常小了,所以我们选择8这个数宇。

补充:

  • Poisson分布(泊松分布),是一种统计与概率学里常见到的离散[概率分布]。泊松分布的概率函数为:
    公式
    泊松分布的参数A是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。

  • 以下是我在研究这个问题时,在一些资料上面翻看的解释,供大家参考:

    红黑树的平均查找长度是log(n),如果长度为8,平均查找长度为log(8) = 3,链表的平均查找长度为n/2,当长度为8时,平均查找长虔为8/2 = 4,这才有转换成树的必要;链表长度如果是小于等于6, 6/2 = 3,而log(6) = 2.6,虽然速度也很快的,但是转化为树结构和生成树的时间并不会太短。

  1. 当链表的值小于6则会从红黑树转回链表
// 当桶(bucket)上的结点数小于这个值,树转为链表 
static final int UNTREEIFY_THRESHOLD = 6;

 
 
  • 1
  • 2
  1. 当Map里面的数量超过这个值时,表中的桶才能进行树形化,否则桶内元素太多时会扩容,而不是树形化为了避免进行扩容、树形化选择的冲突,这个值不能小于4*TREEIFY_THRESHOLD(8)
// 桶中结构转化为红黑树对应的数组长度最小的值 
static final int MIN_TREEIFY_CAPACITY = 64;

 
 
  • 1
  • 2
  1. table用来初始化(必须是二的n次幂)(重点)
// 存储元素的数组 
transient Node<K,V>[] table;

 
 
  • 1
  • 2

table在jdk1.8中我们了解到HashMap是由数组加链表加红黑树来组成的结构其中table就是HashMap中的数组,jdk8之前数组类型是Entry<K,V>类型。从jdk1.8之后是Node<K,V>类型。只是换了个名字,都实现了一样的接口:Map.Entry<K,V>。负责存储键值对数据的。

  1. 用来存放缓存
// 存放具体元素的集合
transient Set<Map.Entry<K,V>> entrySet;

 
 
  • 1
  • 2
  1. HashMap中存放元素的个数(重点)
// 存放元素的个数,注意这个不等于数组的长度
 transient int size;

 
 
  • 1
  • 2

size为HashMap中K-V的实时数量,不是数组table的长度。

  1. 用来记录HashMap的修改次数
// 每次扩容和更改map结构的计数器
 transient int modCount;  

 
 
  • 1
  • 2
  1. 用来调整大小下一个容量的值计算方式为(容量*负载因子)
// 临界值 当实际大小(容量*负载因子)超过临界值时,会进行扩容
int threshold;

 
 
  • 1
  • 2
  1. 哈希表的负载因子(重点)
// 负载因子
final float loadFactor;

 
 
  • 1
  • 2

说明:

  • loadFactor 负载因子,是用来衡量HashMap满的程度,表示HashMap的疏密程度,影响hash操作到同一个数组位置的概率,计算HashMap的实时负载因子的方法为:size/capacity,而不是占用桶的数量去除以capacity。capacity 是桶的数量,也就是 table 的长度 length。

    loadFactor太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor的默认值为0.75f是官方给出的一个比较好的临界值

    当HashMap里面容纳的元素已经达到HashMap数组长度的75%时,表示HashMap太挤了,需要扩容,而扩容这个过程涉及到 rehash、复制数据等操作,非常消耗性能。所以开发中尽量减少扩容的次数,可以通过创建HashMap集合对象时指定初始容量来尽量避免。

    同时在HashMap的构造器中可以定制loadFactor。

// 构造方法,构造一个带指定初始容量和负载因子的空HashMap
HashMap(int initialCapacity, float loadFactor);

 
 
  • 1
  • 2
  • 为什么负载因子设置为0.75,初始化临界值是12?

    loadFactor越趋近于1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor越小,也就是趋近于0,数组中存放的数据(entry)也就越少,也就越稀疏。

数据
如果希望链表尽可能少些,要提前扩容。有的数组空间有可能一直没有存储数据,负载因子尽可能小一些。

举例:

例如:负载因子是0.4。 那么16*0.4--->6 如果数组中满6个空间就扩容会造成数组利用率太低了。
	 负载因子是0.9。 那么16*0.9---->14 那么这样就会导致链表有点多了。导致查找元素效率低。

 
 
  • 1
  • 2

所以既兼顾数组利用率又考虑链表不要太多,经过大量测试0.75是最佳方案。

  • threshold计算公式:capacity(数组长度默认16) * loadFactor(负载因子默认0.75)。这个值是当前已占用数组长度的最大值。当Size >= threshold的时候,那么就要考虑对数组的resize(扩容),也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。 扩容后的 HashMap 容量是之前容量的两倍。
4.2 构造方法

HashMap 中重要的构造方法,它们分别如下:

  1. 构造一个空的HashMap,默认初始容量(16)和默认负载因子(0.75)
public HashMap() {
   this.loadFactor = DEFAULT_LOAD_FACTOR; // 将默认的负载因子0.75赋值给loadFactor,并没有创建数组
}

 
 
  • 1
  • 2
  • 3
  1. 构造一个具有指定的初始容量和默认负载因子(0.75)HashMap
 // 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

 
 
  • 1
  • 2
  • 3
  • 4
  1. 构造一个具有指定的初始容量和负载因子的 HashMap
/*
	 指定“容量大小”和“负载因子”的构造函数
	 initialCapacity:指定的容量
	 loadFactor:指定的负载因子
*/
public HashMap(int initialCapacity, float loadFactor) {
    	// 判断初始化容量initialCapacity是否小于0
        if (initialCapacity < 0)
            // 如果小于0,则抛出非法的参数异常IllegalArgumentException
            throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
    	// 判断初始化容量initialCapacity是否大于集合的最大容量MAXIMUM_CAPACITY
        if (initialCapacity > MAXIMUM_CAPACITY)
            // 如果超过MAXIMUM_CAPACITY,会将MAXIMUM_CAPACITY赋值给initialCapacity
            initialCapacity = MAXIMUM_CAPACITY;
    	// 判断负载因子loadFactor是否小于等于0或者是否是一个非数值
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            // 如果满足上述其中之一,则抛出非法的参数异常IllegalArgumentException
            throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
     	// 将指定的负载因子赋值给HashMap成员变量的负载因子loadFactor
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }
// 最后调用了tableSizeFor,来看一下方法实现:
     /*
     	返回比指定初始化容量大的最小的2的n次幂
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

说明:

对于 javathis.threshold = tableSizeFor(initialCapacity); 疑问解答:

tableSizeFor(initialCapacity)判断指定的初始化容量是否是2的n次幂,如果不是那么会变为比指定初始化容量大的最小的2的n次幂。
但是注意,在tableSizeFor方法体内部将计算后的数据返回给调用这里了,并且直接赋值给threshold边界值了。有些人会觉得这里是一个bug,应该这样书写:
this.threshold = tableSizeFor(initialCapacity) * this.loadFactor;
这样才符合threshold的意思(当HashMap的size到达threshold这个阈值时会扩容)。
但是请注意,在jdk8以后的构造方法中,并没有对table这个成员变量进行初始化,table的初始化被推迟到了put方法中,在put方法中会对threshold重新计算。

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  1. 包含另一个“Map”的构造函数
// 构造一个映射关系与指定 Map 相同的新 HashMap。
public HashMap(Map<? extends K, ? extends V> m) {
    	// 负载因子loadFactor变为默认的负载因子0.75
         this.loadFactor = DEFAULT_LOAD_FACTOR;
         putMapEntries(m, false);
 }

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

最后调用了 putMapEntries(),来看一下方法实现:

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    //获取参数集合的长度
    int s = m.size();
    if (s > 0) {
        //判断参数集合的长度是否大于0,说明大于0
        if (table == null) { // 判断table是否已经初始化
                // 未初始化,s为m的实际元素个数
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY);
                // 计算得到的t大于阈值,则初始化阈值
                if (t > threshold)
                    threshold = tableSizeFor(t);
        }
        // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

注意:

float ft = ((float)s / loadFactor) + 1.0F; 这一行代码中为什么要加1.0F ?

s/loadFactor的结果是小数,加1.0F与(int)ft相当于是对小数做一个向上取整以尽可能的保证更大容量,更大的容量能够减少resize的调用次数。所以 + 1.0F是为了获取更大的容量。

例如:原来集合的元素个数是6个,那么6/0.75是8,是2的n次幂,那么新的数组大小就是8了。然后原来数组的数据就会存储到长度是8的新的数组中了,这样会导致在存储元素的时候,容量不够,还得继续扩容,那么性能降低了,而如果+1呢,数组长度直接变为16了,这样可以减少数组的扩容。

4.3成员方法
4.3.1 增加方法

put方法是比较复杂的,实现步骤大致如下:

  1. 先通过hash值计算出key映射到哪个桶;
  2. 如果桶上没有碰撞冲突,则直接插入;
  3. 如果出现碰撞冲突了,则需要处理冲突:
    a 如果该桶使用红黑树处理冲突,则调用红黑树的方法插入数据;
    b 否则采用传统的链式方法插入。如果链的长度达到临界值,则把链转变为红黑树;
  4. 如果桶中存在重复的键,则为该键替换新值value;
  5. 如果size大于阈值threshold,则进行扩容;

具体的方法如下:

public V put(K key, V value) {
	return putVal(hash(key), key, value, false, true);
}

 
 
  • 1
  • 2
  • 3

说明:

  1. HashMap只提供了put用于添加元素,putVal方法只是给put方法调用的一个方法,并没有提供给用户使用。 所以我们重点看putVal方法。
  2. 我们可以看到在putVal()方法中key在这里执行了一下hash()方法,来看一下Hash方法是如何实现的。
static final int hash(Object key) {
	int h;
	/*
	1)如果key等于null:返回的是0.
	2)如果key不等于null:首先计算出key的hashCode赋值给h,然后与h无符号右移16位后的二进制进行按位异或得到最后的hash值
	*/
	return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

从上面可以得知HashMap是支持Key为空的,而HashTable是直接用Key来获取HashCode所以key为空会抛异常。

解读上述hash方法:

我们先研究下key的哈希值是如何计算出来的。key的哈希值是通过上述方法计算出来的。

这个哈希方法首先计算出key的hashCode赋值给h,然后与h无符号右移16位后的二进制进行按位异或得到最后的 hash值。计算过程如下所示:

static final int hash(Object key) {
	int h;
	return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

 
 
  • 1
  • 2
  • 3
  • 4

在putVal函数中使用到了上述hash函数计算的哈希值:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
	...
	if ((p = tab[i = (n - 1) & hash]) == null) // 这里的n表示数组长度16
	...
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5

计算过程如下所示:

说明:

  1. key.hashCode();返回散列值也就是hashcode,假设随便生成的一个值。
  2. n表示数组初始化的长度是16。
  3. &(按位与运算):运算规则:相同的二进制数位上,都是1的时候,结果为1,否则为零。
  4. ^(按位异或运算):运算规则:相同的二进制数位上,数字相同,结果为0,不同为1。

计算过程
简单来说就是:

高16bit不变,低16bit和高16bit做了一个异或(得到的hashCode转化为32位二进制,前16位和后16位低16bit和高16bit做了一个异或)

问题:为什么要这样操作呢?

如果当n即数组长度很小,假设是16的话,那么n - 1即为1111 ,这样的值和hashCode直接做按位与操作,实际上只使用了哈希值的后4位。如果当哈希值的高位变化很大,低位变化很小,这样就很容易造成哈希冲突了,所以这里把高低位都利用起来,从而解决了这个问题。

现在看putVal()方法,看看它到底做了什么。

主要参数:

  • hash key的hash值
  • key 原始Key
  • value 要存放的值
  • onlyIfAbsent 如果true代表不更改现有的值
  • evict 如果为false表示table为创建状态

putVal()方法源代码如下所示:

public V put(K key, V value) {
	return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
/*
1)transient Node<K,V>[] table; 表示存储Map集合中元素的数组。
2)(tab = table) == null 表示将空的table赋值给tab,然后判断tab是否等于null,第一次肯定是null。
3)(n = tab.length) == 0 表示将数组的长度0赋值给n,然后判断n是否等于0,n等于0,由于if判断使用双或,满足一个即可,则执行代码 n = (tab = resize()).length; 进行数组初始化,并将初始化好的数组长度赋值给n。
4)执行完n = (tab = resize()).length,数组tab每个空间都是null。
/

if ((tab = table) null || (n = tab.length) 0)
n = (tab = resize()).length;
/
1)i = (n - 1) & hash 表示计算数组的索引赋值给i,即确定元素存放在哪个桶中。
2)p = tab[i = (n - 1) & hash]表示获取计算出的位置的数据赋值给结点p。
3) (p = tab[i = (n - 1) & hash]) == null 判断结点位置是否等于null,如果为null,则执行代码:tab[i] = newNode(hash, key, value, null);根据键值对创建新的结点放入该位置的桶中。
小结:如果当前桶没有哈希碰撞冲突,则直接把键值对插入空间位置。
/

if ((p = tab[i = (n - 1) & hash]) == null)
// 创建一个新的结点存入到桶中
tab[i] = newNode(hash, key, value, null);
else {
// 执行else说明tab[i]不等于null,表示这个位置已经有值了
Node<K,V> e; K k;
/
比较桶中第一个元素(数组中的结点)的hash值和key是否相等
1)p.hash == hash :p.hash表示原来存在数据的hash值 hash表示后添加数据的hash值 比较两个hash值是否相等。
说明:p表示tab[i],即 newNode(hash, key, value, null)方法返回的Node对象。
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
}
而在Node类中具有成员变量hash用来记录着之前数据的hash值的。
2)(k = p.key) == key :p.key获取原来数据的key赋值给k key 表示后添加数据的key比较两个key的地址值是否相等。
3)key != null && key.equals(k):能够执行到这里说明两个key的地址值不相等,那么先判断后添加的key是否等于null,如果不等于null再调用equals方法判断两个key的内容是否相等。
/

if (p.hash hash &&
((k = p.key) key || (key != null && key.equals(k))))
/
说明:两个元素哈希值相等,并且key的值也相等,将旧的元素整体对象赋值给e,用e来记录
/

e = p;
// hash值不相等或者key不相等;判断p是否为红黑树结点
else if (p instanceof TreeNode)
// 放入树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 说明是链表结点
else {
/
1)如果是链表的话需要遍历到最后结点然后插入
2)采用循环遍历的方式,判断链表中是否有重复的key
/

for (int binCount = 0; ; ++binCount) {
/
1)e = p.next 获取p的下一个元素赋值给e。
2)(e = p.next) == null 判断p.next是否等于null,等于null,说明p没有下一个元素,那么此时到达了链表的尾部,还没有找到重复的key,则说明HashMap没有包含该键,将该键值对插入链表中。
/

if ((e = p.next) == null) {
/
1)创建一个新的结点插入到尾部
p.next = newNode(hash, key, value, null);
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
}
注意第四个参数next是null,因为当前元素插入到链表末尾了,那么下一个结点肯定是null。
2)这种添加方式也满足链表数据结构的特点,每次向后添加新的元素。
/

p.next = newNode(hash, key, value, null);
/
1)结点添加完成之后判断此时结点个数是否大于TREEIFY_THRESHOLD临界值8,如果大于则将链表转换为红黑树。
2)int binCount = 0 :表示for循环的初始化值。从0开始计数。记录着遍历结点的个数。值是0表示第一个结点,1表示第二个结点。。。。7表示第八个结点,加上数组中的的一个元素,元素个数是9。
TREEIFY_THRESHOLD - 1 --》8 - 1 —》7
如果binCount的值是7(加上数组中的的一个元素,元素个数是9)
TREEIFY_THRESHOLD - 1也是7,此时转换红黑树。
*/

if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 转换为红黑树
treeifyBin(tab, hash);
// 跳出循环
break;
}

            <span class="token comment">/*
            	执行到这里说明e = p.next 不是null,不是最后一个元素。继续判断链表中结点的key值与插入的元素的key值是否相等。
            */</span>
            <span class="token keyword">if</span> <span class="token punctuation">(</span>e<span class="token punctuation">.</span>hash <span class="token operator">==</span> hash <span class="token operator">&amp;&amp;</span>
                <span class="token punctuation">(</span><span class="token punctuation">(</span>k <span class="token operator">=</span> e<span class="token punctuation">.</span>key<span class="token punctuation">)</span> <span class="token operator">==</span> key <span class="token operator">||</span> <span class="token punctuation">(</span>key <span class="token operator">!=</span> null <span class="token operator">&amp;&amp;</span> key<span class="token punctuation">.</span><span class="token function">equals</span><span class="token punctuation">(</span>k<span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
                <span class="token comment">// 相等,跳出循环</span>
                <span class="token comment">/*
            		要添加的元素和链表中的存在的元素的key相等了,则跳出for循环。不用再继续比较了
            		直接执行下面的if语句去替换去 if (e != null) 
            	*/</span>
                <span class="token keyword">break</span><span class="token punctuation">;</span>
            <span class="token comment">/*
            	说明新添加的元素和当前结点不相等,继续查找下一个结点。
            	用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
            */</span>
            p <span class="token operator">=</span> e<span class="token punctuation">;</span>
        <span class="token punctuation">}</span>
    <span class="token punctuation">}</span>
    <span class="token comment">/*
    	表示在桶中找到key值、hash值与插入元素相等的结点
    	也就是说通过上面的操作找到了重复的键,所以这里就是把该键的值变为新的值,并返回旧值
    	这里完成了put方法的修改功能
    */</span>
    <span class="token keyword">if</span> <span class="token punctuation">(</span>e <span class="token operator">!=</span> null<span class="token punctuation">)</span> <span class="token punctuation">{</span> 
        <span class="token comment">// 记录e的value</span>
        V oldValue <span class="token operator">=</span> e<span class="token punctuation">.</span>value<span class="token punctuation">;</span>
        <span class="token comment">// onlyIfAbsent为false或者旧值为null</span>
        <span class="token keyword">if</span> <span class="token punctuation">(</span><span class="token operator">!</span>onlyIfAbsent <span class="token operator">||</span> oldValue <span class="token operator">==</span> null<span class="token punctuation">)</span>
            <span class="token comment">// 用新值替换旧值</span>
            <span class="token comment">// e.value 表示旧值  value表示新值 </span>
            e<span class="token punctuation">.</span>value <span class="token operator">=</span> value<span class="token punctuation">;</span>
        <span class="token comment">// 访问后回调</span>
        <span class="token function">afterNodeAccess</span><span class="token punctuation">(</span>e<span class="token punctuation">)</span><span class="token punctuation">;</span>
        <span class="token comment">// 返回旧值</span>
        <span class="token keyword">return</span> oldValue<span class="token punctuation">;</span>
    <span class="token punctuation">}</span>
<span class="token punctuation">}</span>
<span class="token comment">// 修改记录次数</span>
<span class="token operator">++</span>modCount<span class="token punctuation">;</span>
<span class="token comment">// 判断实际大小是否大于threshold阈值,如果超过则扩容</span>
<span class="token keyword">if</span> <span class="token punctuation">(</span><span class="token operator">++</span>size <span class="token operator">&gt;</span> threshold<span class="token punctuation">)</span>
    <span class="token function">resize</span><span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">;</span>
<span class="token comment">// 插入后回调</span>
<span class="token function">afterNodeInsertion</span><span class="token punctuation">(</span>evict<span class="token punctuation">)</span><span class="token punctuation">;</span>
<span class="token keyword">return</span> null<span class="token punctuation">;</span>

}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
4.3.2 将链表转换为红黑树的treeifyBin方法

结点添加完成之后判断此时结点个数是否大于TREEIFY_THRESHOLD临界值8,如果大于则将链表转换为红黑树,转换红黑树的方法 treeifyBin,整体代码如下:

if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
   //转换为红黑树 tab表示数组名  hash表示哈希值
   treeifyBin(tab, hash);

 
 
  • 1
  • 2
  • 3

treeifyBin方法如下所示:

/*
	替换指定哈希表的索引处桶中的所有链接结点,除非表太小,否则将修改大小。
	Node<K,V>[] tab = tab 数组名
	int hash = hash表示哈希值
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    /*
    	如果当前数组为空或者数组的长度小于进行树形化的阈值(MIN_TREEIFY_CAPACITY = 64),就去扩容。而不是将结点变为红黑树。
    	目的:如果数组很小,那么转换红黑树,然后遍历效率要低一些。这时进行扩容,那么重新计算哈希值,链表长度有可能就变短了,数据会放到数组中,这样相对来说效率高一些。
    */
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        //扩容方法
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        /*
        	1)执行到这里说明哈希表中的数组长度大于阈值64,开始进行树形化
        	2)e = tab[index = (n - 1) & hash]表示将数组中的元素取出赋值给e,e是哈希表中指定位置桶里的链表结点,从第一个开始
        */
        // hd:红黑树的头结点   tl:红黑树的尾结点
        TreeNode<K,V> hd = null, tl = null;
        do {
            // 新创建一个树的结点,内容和当前链表结点e一致
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p; // 将新创键的p结点赋值给红黑树的头结点
            else {
                p.prev = tl; // 将上一个结点p赋值给现在的p的前一个结点
                tl.next = p; // 将现在结点p作为树的尾结点的下一个结点
            }
            tl = p;
            /*
            	e = e.next 将当前结点的下一个结点赋值给e,如果下一个结点不等于null
            	则回到上面继续取出链表中结点转换为红黑树
            */
        } while ((e = e.next) != null);
        /*
        	让桶中的第一个元素即数组中的元素指向新建的红黑树的结点,以后这个桶里的元素就是红黑树
        	而不是链表数据结构了
        */
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

小结:上述操作一共做了如下几件事:

  1. 根据哈希表中元素个数确定是扩容还是树形化。
  2. 如果是树形化遍历桶中的元素,创建相同个数的树形结点,复制内容,建立起联系。
  3. 然后让桶中的第一个元素指向新创建的树根结点,替换桶的链表内容为树形化内容。
4.3.3 扩容方法 resize()
  • 扩容机制
  1. 什么时候才需要扩容

    当HashMap中的元素个数超过数组大小(数组长度)*loadFactor(负载因子)时,就会进行数组扩容,loadFactor的默认值(DEFAULT_LOAD_FACTOR)是0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中的元素个数超过16×0.75=12(这个值就是阈值或者边界值threshold值)的时候,就把数组的大小扩展为2×16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预知元素的个数能够有效的提高HashMap的性能。

    补充:

    当HashMap中的其中一个链表的对象个数如果达到了8个,此时如果数组长度没有达到64,那么HashMap会先扩容解决,如果已经达到了64,那么这个链表会变成红黑树,结点类型由Node变成TreeNode类型。当然,如果映射关系被移除后,下次执行resize方法时判断树的结点个数低于6,也会再把树转换为链表。

  2. HashMap的扩容是什么

    进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。

    HashMap在进行扩容时,使用的rehash方式非常巧妙,因为每次扩容都是翻倍,与原来计算的 (n-1)&hash的结果相比,只是多了一个bit位,所以结点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。

    例如我们从16扩展为32时,具体的变化如下所示:

扩容
因此元素在重新计算hash之后,因为n变为2倍,那么n-1的标记范围在高位多1bit(红色),因此新的index就会发生这样的变化。

hash
说明:

5是假设计算出来的原来的索引。这样就验证了上述所描述的:扩容之后所以结点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。

因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就可以了,是0的话索引没变,是1的话索引变成“原索引+oldCap(原位置+旧容量)”。可以看看下图为16扩充为32的resize示意图:

扩容
正是因为这样巧妙的rehash方式,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,在resize的过程中保证了rehash之后每个桶上的结点数一定小于等于原来桶上的结点数,保证了rehash之后不会出现更严重的hash冲突,均匀的把之前的冲突的结点分散到新的桶中了。

  • 源码resize方法的解读

    下面是代码的具体实现:

final Node<K,V>[] resize() {
    // 得到当前数组
    Node<K,V>[] oldTab = table;
    // 如果当前数组等于null长度返回0,否则返回当前数组的长度
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    //当前阀值点 默认是12(16*0.75)
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 如果老的数组长度大于0
    // 开始计算扩容后的大小
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            // 修改阈值为int的最大值
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        /*
        	没超过最大值,就扩充为原来的2倍
        	1) (newCap = oldCap << 1) < MAXIMUM_CAPACITY 扩大到2倍之后容量要小于最大容量
        	2)oldCap >= DEFAULT_INITIAL_CAPACITY 原数组长度大于等于数组初始化长度16
        */
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            // 阈值扩大一倍
            newThr = oldThr << 1; // double threshold
    }
    // 老阈值点大于0 直接赋值
    else if (oldThr > 0) // 老阈值赋值给新的数组长度
        newCap = oldThr;
    else { // 直接使用默认值
        newCap = DEFAULT_INITIAL_CAPACITY;//16
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize最大上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    // 新的阀值 默认原来是12 乘以2之后变为24
    threshold = newThr;
    // 创建新的哈希表
    @SuppressWarnings({"rawtypes","unchecked"})
    //newCap是新的数组长度--》32
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    // 判断旧数组是否等于空
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        // 遍历旧的哈希表的每个桶,重新计算桶里元素的新位置
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                // 原来的数据赋值为null 便于GC回收
                oldTab[j] = null;
                // 判断数组是否有下一个引用
                if (e.next == null)
                    // 没有下一个引用,说明不是链表,当前桶上只有一个键值对,直接插入
                    newTab[e.hash & (newCap - 1)] = e;
                //判断是否是红黑树
                else if (e instanceof TreeNode)
                    // 说明是红黑树来处理冲突的,则调用相关方法把树分开
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // 采用链表处理冲突
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    // 通过上述讲解的原理来计算结点的新位置
                    do {
                        // 原索引
                        next = e.next;
                     	// 这里来判断如果等于true e这个结点在resize之后不需要移动位置
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
4.3.4 删除方法remove()

删除的话就是首先先找到元素的位置,如果是链表就遍历链表找到元素之后删除。如果是用红黑树就遍历树然后找到之后做删除,树小于6的时候要转链表。

删除remove()方法:

// remove方法的具体实现在removeNode方法中,所以我们重点看下removeNode方法
public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

removeNode()方法:

final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
	// 根据hash找到位置 
	// 如果当前key映射到的桶不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        // 如果桶上的结点就是要找的key,则将node指向该结点
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {
            // 说明结点存在下一个结点
            if (p instanceof TreeNode)
                // 说明是以红黑树来处理的冲突,则获取红黑树要删除的结点
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                // 判断是否以链表方式处理hash冲突,是的话则通过遍历链表来寻找要删除的结点
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        // 比较找到的key的value和要删除的是否匹配
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            // 通过调用红黑树的方法来删除结点
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                // 链表删除
                tab[index] = node.next;
            else
                p.next = node.next;
            // 记录修改次数
            ++modCount;
            // 变动的数量
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
4.3.5 查找元素方法get()

查找方法,通过元素的Key找到Value。

代码如下:

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

 
 
  • 1
  • 2
  • 3
  • 4

get方法主要调用的是getNode方法,代码如下:

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 如果哈希表不为空并且key对应的桶上不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        /* 
        	判断数组元素是否相等
        	根据索引的位置检查第一个元素
        	注意:总是检查第一个元素
        */
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 如果不是第一个元素,判断是否有后续结点
        if ((e = first.next) != null) {
            // 判断是否是红黑树,是的话调用红黑树中的getTreeNode方法获取结点
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                // 不是红黑树的话,那就是链表结构了,通过循环的方法判断链表中是否存在该key
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

小结:

  1. get方法实现的步骤:
    a. 通过hash值获取该key映射到的桶
    b. 桶上的key就是要查找的key,则直接找到并返回
    c. 桶上的key不是要找的key,则查看后续的结点:
    	如果后续结点是红黑树结点,通过调用红黑树的方法根据key获取value
    	如果后续结点是链表结点,则通过循环遍历链表根据key获取value
    
       
       
    • 1
    • 2
  2. 上述红黑树结点调用的是getTreeNode方法通过树形结点的find方法进行查找:
 final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
 }
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
    TreeNode<K,V> p = this;
    do {
        int ph, dir; K pk;
        TreeNode<K,V> pl = p.left, pr = p.right, q;
        if ((ph = p.hash) > h)
            p = pl;
        else if (ph < h)
            p = pr;
        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
            return p; // 找到之后直接返回
        else if (pl == null)
            p = pr;
        else if (pr == null)
            p = pl;
        else if ((kc != null ||
                  (kc = comparableClassFor(k)) != null) &&
                 (dir = compareComparables(kc, k, pk)) != 0)
            p = (dir < 0) ? pl : pr;
        // 递归查找
        else if ((q = pr.find(h, k, kc)) != null)
            return q;
        else
            p = pl;
    } while (p != null);
    return null;
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  1. 查找红黑树,由于之前添加时已经保证这个树是有序的了,因此查找时基本就是折半查找,效率更高。
  2. 这里和插入时一样,如果对比结点的哈希值和要查找的哈希值相等,就会判断key是否相等,相等就直接返回。不相等就从子树中递归查找。
  3. 若为树,则在树中通过key.equals(k)查找,O(logn)
    若为链表,则在链表中通过key.equals(k)查找,O(n)。
4.3.6 遍历HashMap集合几种方式
  1. 分别遍历Key和Values
for (String key : map.keySet()) {
	System.out.println(key);
}
for (Object vlaue : map.values() {
	System.out.println(value);
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  1. 使用Iterator迭代器迭代
Iterator<Map.Entry<String, Object>> iterator = map.entrySet().iterator();
while (iterator.hasNext()) {
    Map.Entry<String, Object> mapEntry = iterator.next();
    System.out.println(mapEntry.getKey() + "---" + mapEntry.getValue());
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  1. 通过get方式(不建议使用)
Set<String> keySet = map.keySet();
for (String str : keySet) {
	System.out.println(str + "---" + map.get(str));
}

 
 
  • 1
  • 2
  • 3
  • 4

说明:根据阿里开发手册,不建议使用这种方式,因为迭代两次。keySet获取Iterator一次,还有通过get又迭代一次,降低性能。

  1. jdk8以后使用Map接口中的默认方法:
default void forEach(BiConsumer<? super K,? super V> action) 
// BiConsumer接口中的方法:
	void accept​(T t, U u) 对给定的参数执行此操作。  
		参数 
            t - 第一个输入参数 
            u - 第二个输入参数 

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

遍历代码:

HashMap<String,String> map = new HashMap();
map.put("001", "zhangsan");
map.put("002", "lisi");
map.forEach((key, value) -> {
    System.out.println(key + "---" + value);
});

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

五、如何设计多个非重复的键值对要存储HashMap的初始化?

5.1 HashMap的初始化问题描述

如果我们确切的知道我们有多少键值对需要存储,那么我们在初始化HashMap的时候就应该指定它的容量,以防止HashMap自动扩容,影响使用效率。

默认情况下HashMap的容量是16,但是,如果用户通过构造函数指定了一个数字作为容量,那么Hash会选择大于该数字的第一个2的幂作为容量(3->4、7->8、9->16)。这点我们在上述已经进行过讲解。

《阿里巴巴Java开发手册》中建议我们设置HashMap的初始化容量。

初始化
那么,为什么要这么建议?你有想过没有。

当然,以上建议也是有理论支撑的。我们上面介绍过,HashMap的扩容机制,就是当达到扩容条件时会进行扩容。HashMap的扩容条件就是当HashMap中的元素个数(size)超过临界值(threshold)时就会自动扩容。在HashMap中,threshold = loadFactor * capacity。

所以,如果我们没有设置初始容量大小,随着元素的不断增加,HashMap会有可能发生多次扩容,而HashMap中的扩容机制决定了每次扩容都需要重建hash表,是非常影响性能的。

但是设置初始化容量,设置的数值不同也会影响性能,那么当我们已知HashMap中即将存放的KV个数的时候,容量设置成多少为好呢?

5.2 HashMap中容量的初始化

当我们使用HashMap(int initialCapacity)来初始化容量的时候,jdk会默认帮我们计算一个相对合理的值当做初始容量。那么,是不是我们只需要把已知的HashMap中即将存放的元素个数直接传给initialCapacity就可以了呢?

关于这个值的设置,在《阿里巴巴Java开发手册》有以下建议:
建议
也就是说,如果我们设置的默认值是7,经过Jdk处理之后,会被设置成8,但是,这个HashMap在元素个数达到 8*0.75 = 6的时候就会进行一次扩容,这明显是我们不希望见到的。我们应该尽量减少扩容。原因也已经分析过。

如果我们通过initialCapacity/ 0.75F + 1.0F计算,7/0.75 + 1 = 10 ,10经过Jdk处理之后,会被设置成16,这就大大的减少了扩容的几率。

当HashMap内部维护的哈希表的容量达到75%时(默认情况下),会触发rehash,而rehash的过程是比较耗费时间的。所以初始化容量要设置成initialCapacity/0.75 + 1的话,可以有效的减少冲突也可以减小误差。

所以,我可以认为,当我们明确知道HashMap中元素的个数的时候,把默认容量设置成initialCapacity/ 0.75F + 1.0F是一个在性能上相对好的选择,但是,同时也会牺牲些内存。

我们想要在代码中创建一个HashMap的时候,如果我们已知这个Map中即将存放的元素个数,给HashMap设置初始容量可以在一定程度上提升效率。

但是,JDK并不会直接拿用户传进来的数字当做默认容量,而是会进行一番运算,最终得到一个2的幂。原因也已经分析过。

但是,为了最大程度的避免扩容带来的性能消耗,我们建议可以把默认容量的数字设置成initialCapacity/ 0.75F + 1.0F


转载于https://blog.csdn.net/weixin_41105242/article/details/106972635

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值