极大似然原理

 极大似然原理:

假设从一个篮子里摸球,已知篮子里黑球与白球的比例是3:1或1:3,摸了5次得到的结果分别是黑、黑、白、黑、黑。问黑球所占的比例是多少?

如果我们什么都没学,按照常识,看起来黑球的比例应当为3/4,白球的比例为1/4,因为从结果来看黑球出现的概率比白球高。这个“看起来”就是所谓的极大似然原理。我们可以计算一下

假设黑球的比例为3/4,那么摸了5次后,得到上述结果的概率为

P_{i}=(\frac{3}{4})^{4}\times \frac{1}{4}= \frac{81}{1024}

假设黑球的比例为1/4,那么摸了5次后,得到上述结果的概率为

P_{2}=(\frac{1}{4})^{4}\times \frac{3}{4}= \frac{3}{1024}

显然前者发生的可能性更大,因此黑球的比例应当是3/4。

推广到更一般化,对于一个独立的离散型随机变量(这里暂不考虑连续型,但原理几乎一模一样),设p(X;\theta)表示给定某一参数\theta后,随机变量X发生的概率。那么,对于观测到随机变量X的值{x_{1}x_{2}......x_{i}}(这个事件已经发生并且得到结果了,称其为事件A),可计算出他们各自发生的概率为p(x_{1};\theta)p(x_{2};\theta)、......p(x_{i};\theta)。由于它们是相互独立的,因此事件A发生的概率是

P=p(x_{1};\theta)\cdot p(x_{2};\theta)\cdot ...... \cdot p(x_{i};\theta)

把上式的P改成L(\theta),即

L(\theta)=p(x_{1};\theta)\cdot p(x_{2};\theta)\cdot ...... \cdot p(x_{i};\theta)

该式被称为似然函数,它含有一个自变量\theta,我们要求的,就是当L(\theta)取得最大值时,\theta的值,该值用{\hat{\theta}}表示,通常的做法是求导数令其等于0,即可得到解。

回到上面的例子,\theta实际上只有两个取值:分别是3/4和1/4,因此只需要算出所有的情况,选择似然函数值最大的那个,就得到了最终结果。

最大后验估计:

对于某个估计问题,假设某个模型的参数\theta取1、2、3,观测到的随机变量X。

则根据贝叶斯公式,有

P(\theta=1|X)=\frac{P(X|\theta=1)\cdot P(\theta=1)}{P(X)}

表示当观察到随机变量X时,\theta=1的概率。我们假设这个概率为0.2,即

P(\theta=1|X)=0.2

同样的,我们假设

P(\theta=2|X)=0.5

P(\theta=3|X)=0.3

那最大后验估计,就是指当X给定时,\theta取各个值的可能性,再从这些可能性中取最大的。在这里,我们很容易观察到,\theta应当等于2。极大似然的思想是\theta只有一个固定值,这个固定值使得P(X|\theta)最大,即最大化事件X发生的概率。最大后验估计的思想是\theta可能有很多个值(服从某一分布),即X发生的前提下,模型参数\theta=1的概率是0.2,\theta=2的概率是0.5,\theta=3的概率是0.3,取那个使P(\theta|X)最大的\theta值,即最大化\theta取值的可能性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值