Redis(六)应用问题(缓存穿透,缓存击穿,缓存雪崩,分布式锁)
(a)缓存穿透
1)是什么?
1.应用服务器压力变大了(很多请求过来了)
2.redis命中率降低了(一般应用服务器是先查缓存-查到返回;查不到就查数据库,如数据库中存在,就放入缓存中。)
3.一直查数据库(如缓存中大量数据不存在,就会一直去查数据库,造成数据库压力变大,)
*这个过程就叫做缓存穿透现象!
2)发生情景
1.redis查询不到数据
2.出现很多非正常url访问(如key对应的数据在数据源并不存在,每次针对此key的请求从缓存获取不到,请求都会压到数据源,从而可能压垮数据源。比如用一个不存在的用户id获取用户信息,不论缓存还是数据库都没有,若黑客利用此漏洞进行攻击可能压垮数据库。)
3)解决方案:
1.对空指缓存-如果查询的返回数据为空(不管数据是否存在),还是把这个空结果(null)进行缓存。设置空结果的过期时间会很短,最长不超过五分钟。
2.设置可访问的名单(白名单)-使用bitmaps类型定义一个可进行访问的名单,名单id作为bitmaps的偏移量(下标)每次访问和bitmaps中的id进行比较,访问id存在bitmps则可访问,不在其中,进行拦截。
3.采用布隆过滤器-一个很长的二进制向量和一系列hash函数,可以用于检索一个元素是否在一个集合中。将所有可能存在的数据哈希到一个足够大的bitmaps中,一个一定不存在的数据会被 这个bitmaps拦截掉,从而避免了对底层存储系统的查询压力。
4)实时监控-当发现redis命中率开始急速降低,需要排查访问对象和访问的数据。
(b)缓存击穿
1)是什么?
1.数据库访问压力瞬时增加
2.redis里面没有出现大量key过期(如出现,则为缓存穿透)
3.redis正常运行
*这个过程为缓存击穿(缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力)
2)发生情景
1.redis某个key过期(过期则redis命中率降低)了,但大量访问正在使用这个key。
2.key可能会在某些事件点被超高并发地访问,是一种非常热点地数据。
3.注:key过期(可以利用redis天然的key自动过期机制,下单时将订单id写入redis,过期时间30分钟,30分钟后检查订单状态,如果未支付,则进行处理但是key过期了redis有通知吗?答案是肯定的。)
3)解决方案:
1.预先设置热门数据-在redis高峰访问之前,把一些热门数据提前存入到redis中,加大这些热门数据key的时长。
2.实时调整-现场监控哪些数据热门,实时调整key的过期时长。
3.使用锁:(会造成效率低下问题)
就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db。
先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX)去set一个mutex key。
当操作返回成功时,再进行load db的操作,并回设缓存,最后删除mutex key。
当操作返回失败,证明有线程在load db,当前线程睡眠一段时间再重试整个get缓存的方法。
(c)缓存雪崩
1)是什么?
1.数据库压力变大(服务器崩溃)
正常现象:
缓存雪崩现象:
*这个过程就是缓存雪崩过程(缓存雪崩是指缓存中数据大批量到过期时间,而查询数据量巨大,引起数据库压力过大甚至down机。和缓存击穿不同的是 缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。)
2)发生情景
1.在极少时间段,查询大量key的集中过期情况(缓存击穿是一个人们人们key过期)
2.key对应的数据存在,但在redis中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
3)解决方案
1.构建多级缓存架构-nginx缓存+redis缓存+其他缓存(ehcache等)
2.使用锁或队列-用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。不适用高并发情况
3.设置过期标志更新缓存-记录缓存数据是否过期(设置提前量),如果过期会触发通知另外的线程在后台去更新实际key的缓存。
4.将缓存失效事件分散开-在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
(d)分布式锁
1)是什么?
1.原来是单机服务器,现在随着演化成分布式集群系统后,由于分布式系统中多线程,多进程并且分布在不同的机器上,使得原来的单机服务器的并发控制锁策略失效。
2.为了解决这个问题,使用一种跨JVM的互斥机制来控制共享资源的访问,这种就称为分布式锁。
3.在分布式集群中,对一个服务器上锁后,对整个集群都有效(整个集群共享这把锁),其它机器只能等待上锁后的机器操作完成并释放锁后,才能进行后续的操作。
2)实现方案:
1.基于数据库实现分布式锁
2.基于缓存(redis等) (性能最高)
3.基于Zookeeper (可靠性最高)
3)使用redis实现分布式锁