- 博客(1)
- 收藏
- 关注
原创 卡尔曼滤波+代码示例
卡尔曼滤波是一种非常强大的递归算法,能够在噪声环境下有效地进行动态系统的状态估计。通过结合系统的预测模型和实际测量数据,卡尔曼滤波可以最小化状态估计的误差,广泛应用于机器人定位、信号处理和自动控制等领域。卡尔曼滤波的稳定性通常通过监控协方差矩阵和卡尔曼增益的变化来判断。稳定的卡尔曼滤波器在经过一段时间后,协方差矩阵和估计误差会趋于稳定。系统模型的准确性、噪声协方差的选择以及数值稳定性都直接影响卡尔曼滤波的稳定性。通过合适的调整,可以确保滤波器的稳定运行。这篇文章概述了卡尔曼滤波的理论基础和应用。
2025-08-03 21:29:09
695
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅