LGOJ P1962 斐波那契数列 & LGOJ P1939 【模板】矩阵加速(数列)解题报告 & 矩阵快速幂

T1 LGOJ P1962 斐波那契数列

题目链接

解题思路

60 p t s 60pts 60pts:通过 f [ i ] = f [ i − 1 ] + f [ i − 2 ] ( i > 2 ) f[i]=f[i-1]+f[i-2](i>2) f[i]=f[i1]+f[i2](i>2)算出,时间复杂度为 O ( n ) O(n) O(n)
100 p t s 100pts 100pts
考虑 i > 3 i>3 i>3时,有
f [ i ] = 1 ∗ f [ i − 1 ] + 1 ∗ f [ i − 2 ] f[i]=1*f[i-1]+1*f[i-2] f[i]=1f[i1]+1f[i2]
f [ i − 1 ] = 1 ∗ f [ i − 1 ] + 0 ∗ f [ i − 2 ] f[i-1]=1*f[i-1]+0*f[i-2] f[i1]=1f[i1]+0f[i2]
[ f [ i ] f [ i − 1 ] ] = [ 1 1 1 0 ] ∗ [ f [ i − 1 ] f [ i − 2 ] ] \begin{bmatrix} f[i]\\f[i-1]\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}*\begin{bmatrix}f[i-1]\\f[i-2]\end{bmatrix} [f[i]f[i1]]=[1110][f[i1]f[i2]]
[ f [ i ] f [ i − 1 ] ] = [ 1 1 1 0 ] i − 2 ∗ [ f [ 2 ] f [ 1 ] ] \begin{bmatrix} f[i]\\f[i-1]\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^{i-2}*\begin{bmatrix}f[2]\\f[1]\end{bmatrix} [f[i]f[i1]]=[1110]i2[f[2]f[1]]
(至于怎么推导出来的,把 i = 3 i=3 i=3带进去试试即可)
又我们知道 f [ 1 ] = f [ 2 ] = 1 f[1]=f[2]=1 f[1]=f[2]=1
只要算出 [ 1 1 1 0 ] i − 2 \begin{bmatrix}1&1\\1&0\end{bmatrix}^{i-2} [1110]i2即可
用快速幂就可以在 O ( l o g 2 n ) O(log_2n) O(log2n)的时间复杂度下跑出结果。
完美。
TIP:注意当 n ≤ 2 n\leq2 n2时要特判

详细代码

#define rg register
#define il inline
#define DEBUG printf("[Passing [%s] in line %d.]\n", __func__, __LINE__)
#define putline putchar('\n')
#define putsp putchar(' ')
#define Rep(a, s, t) for(rg int a = s; a <= t; a++)
#define Repdown(a, t, s) for(rg int a = t; a >= s; a--)
typedef long long ll;
#include<cstdio>
#define rs freopen("test.in", "r", stdin), freopen("test.out", "w", stdout)
struct IO
{
	IO(int set = 0) {if(set) rs;} 
	template<typename T> il IO r(T& x)const
	{
	    x = 0; T f = 1; char ch = getchar();
	    for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
	    for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
	    x *= f; return *this;
	}
	template<typename T> il IO w(T x)const
	{
	    if(x < 0) {putchar('-'); x = -x;}
	    if(x >= 10) w(x / 10);
	    putchar(x % 10 + '0'); return *this;
	}
	template<typename T> il IO wl(const T& x)const {w(x), putline; return *this;}
	template<typename T> il IO ws(const T& x)const {w(x), putsp; return *this;}
	il IO l() {putline; return *this;}
	il IO s() {putline; return *this;}
}io;
template<typename T> il T Max(const T& x, const T& y) {return y < x ? x : y;}
template<typename T> il T Min(const T& x, const T& y) {return y < x ? y : x;}
template<typename T> il void Swap(T& x, T& y) {T tmp = x; x = y; y = tmp;}
#include<cstring>
const ll MO = 1000000007ll;
struct Matrix
{
	ll A[2][2];
	Matrix()
	{
		memset(A, 0, sizeof A);
	}
	void SetU()
	{
		for(rg int i = 0; i < 2; i++)
			for(rg int j = 0; j < 2; j++)
				if(i == j) A[i][j] = 1;
				else A[i][j] = 0;
	}
	ll* operator[] (const int& k) {return A[k];}
	const ll* operator[] (const int& k)const {return A[k];}
	Matrix operator * (const Matrix& B)const
	{
		Matrix C;
		for(rg int i = 0; i < 2; i++)
			for(rg int j = 0; j < 2; j++)
				for(rg int k = 0; k < 2; k++)
					C[i][j] = (C[i][j] + (A[i][k] % MO) * (B[k][j] % MO)) % MO;
		return C;
	}
};

Matrix qpow(Matrix a, ll n)
{
	Matrix res; res.SetU();
	while(n)
	{
		if(n & 1) res = res * a;
		a = a * a;
		n >>= 1;
	}
	return res;
}
int main()
{
    //FileReset();
	Matrix a;
	a[0][0] = a[0][1] = a[1][0] = 1;
	ll n; io.r(n);
	if(n <= 2) {io.wl(1); return 0;}
	a = qpow(a, n - 2);
	io.wl((a[0][0] + a[0][1]) % MO);
    return 0;
}

T2 LGOJ P1939 【模板】矩阵加速(数列)

题目链接

解题思路

同样地,我们写出矩阵关系式
[ a [ x ] a [ x − 1 ] a [ x − 2 ] ] = [ 1 0 1 1 0 0 0 1 0 ] ∗ [ a [ x − 1 ] a [ x − 2 ] a [ x − 3 ] ] \begin{bmatrix}a[x]\\a[x-1]\\a[x-2]\end{bmatrix}=\begin{bmatrix}1&amp;0&amp;1\\1&amp;0&amp;0\\0&amp;1&amp;0\end{bmatrix}*\begin{bmatrix}a[x-1]\\a[x-2]\\a[x-3]\end{bmatrix} a[x]a[x1]a[x2]=110001100a[x1]a[x2]a[x3] = [ 1 0 1 1 0 0 0 1 0 ] x − 3 ∗ [ a [ 3 ] a [ 2 ] a [ 1 ] ] =\begin{bmatrix}1&amp;0&amp;1\\1&amp;0&amp;0\\0&amp;1&amp;0\end{bmatrix}^{x-3}*\begin{bmatrix}a[3]\\a[2]\\a[1]\end{bmatrix} =110001100x3a[3]a[2]a[1]
T 1 T1 T1,完美。
TIP:还是要特判 n ≤ 3 n\leq3 n3的情况

详细代码

#define rg register
#define il inline
#define DEBUG printf("[Passing [%s] in line %d.]\n", __func__, __LINE__)
#define putline putchar('\n')
#define putsp putchar(' ')
#define Rep(a, s, t) for(rg int a = s; a <= t; a++)
#define Repdown(a, t, s) for(rg int a = t; a >= s; a--)
typedef long long ll;
#include<cstdio>
#define rs freopen("test.in", "r", stdin), freopen("test.out", "w", stdout)
struct IO
{
	IO(int set = 0) {if(set) rs;} 
	template<typename T> il IO r(T& x)const
	{
	    x = 0; T f = 1; char ch = getchar();
	    for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
	    for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
	    x *= f; return *this;
	}
	template<typename T> il IO w(T x)const
	{
	    if(x < 0) {putchar('-'); x = -x;}
	    if(x >= 10) w(x / 10);
	    putchar(x % 10 + '0'); return *this;
	}
	template<typename T> il IO wl(const T& x)const {w(x), putline; return *this;}
	template<typename T> il IO ws(const T& x)const {w(x), putsp; return *this;}
	il IO l() {putline; return *this;}
	il IO s() {putline; return *this;}
}io;
template<typename T> il T Max(const T& x, const T& y) {return y < x ? x : y;}
template<typename T> il T Min(const T& x, const T& y) {return y < x ? y : x;}
template<typename T> il void Swap(T& x, T& y) {T tmp = x; x = y; y = tmp;}
#include<cstring>
const ll MO = 1000000007ll;

struct Matrix
{
	ll A[3][3];
	Matrix()
	{
		memset(A, 0, sizeof A);
	}
	void SetU()
	{
		for(rg int i = 0; i < 3; i++)
			for(rg int j = 0; j < 3; j++)
				if(i == j) A[i][j] = 1;
				else A[i][j] = 0;
	}
	const ll* operator[] (const int& k)const {return A[k];}
	ll* operator[] (const int& k) {return A[k];}
	Matrix operator* (const Matrix& B)const
	{
		Matrix C;
		for(rg int i = 0; i < 3; i++)
			for(rg int j = 0; j < 3; j++)
				for(rg int k = 0; k < 3; k++)
					C[i][j] = (C[i][j] + (A[i][k] % MO) * (B[k][j] % MO)) % MO;
		return C;
	}
};
Matrix qpow(Matrix a, int n)
{
	Matrix res; res.SetU();
	while(n)
	{
		if(n & 1) res = res * a;
		a = a * a;
		n >>= 1;
	}
	return res;
}

int main()
{
    //FileReset();
	Matrix a;
	a[0][0] = a[0][2] = a[1][0] = a[2][1] = 1;
	int T;
	io.r(T);
	while(T--)
	{
		ll n; io.r(n);
		if(n <= 3) {io.wl(1); continue;}
		Matrix t = a;
		t = qpow(t, n - 3);
		io.wl((t[0][0] + t[0][1] + t[0][2]) % MO);
	}
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日居月诸Rijuyuezhu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值