LGOJ P3387 【模板】缩点 解题报告

参考资料

[1]星星之火的博客
[2]视频UESTCACM 每周算法讲堂第25期 Tarjan求强连通分量(up:qscqesze)

题目链接

解题思路

题面里也写的很详细了:缩点+DAG(有向无环图)DP
缩点我们采用Tarjan算法,而DP可以使用记忆化搜索的方法实现(省去了拓扑排序的过程)。
f [ i ] f[i] f[i]表示包括以 i i i为根的一颗树可以拥有的最大点权和
f [ i ] = p [ i ] + M a x ( f [ j ] ) , v ( i , j ) ∈ V f[i]=p[i]+Max(f[j]),v(i,j)\in V f[i]=p[i]+Max(f[j]),v(i,j)V
记忆化搜索即可

详细代码

#define rg register
#define il inline
#define DEBUG printf("[Passing [%s] in line %d.]\n", __func__, __LINE__)
#define putline putchar('\n')
#define putsp putchar(' ')
#define Rep(a, s, t) for(rg int a = s; a <= t; a++)
#define Repdown(a, t, s) for(rg int a = t; a >= s; a--)
typedef long long ll;
#include<cstdio>
#define rs freopen("test.in", "r", stdin), freopen("test.out", "w", stdout)
struct IO
{
	IO(int set = 0) {if(set) rs;} 
	template<typename T> il IO r(T& x)const
	{
	    x = 0; T f = 1; char ch = getchar();
	    for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
	    for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
	    x *= f; return *this;
	}
	template<typename T> il IO w(T x)const
	{
	    if(x < 0) {putchar('-'); x = -x;}
	    if(x >= 10) w(x / 10);
	    putchar(x % 10 + '0'); return *this;
	}
	template<typename T> il IO wl(const T& x)const {w(x), putline; return *this;}
	template<typename T> il IO ws(const T& x)const {w(x), putsp; return *this;}
	il IO l() {putline; return *this;}
	il IO s() {putline; return *this;}
}io;
template<typename T> il T Max(const T& x, const T& y) {return y < x ? x : y;}
template<typename T> il T Min(const T& x, const T& y) {return y < x ? y : x;}
template<typename T> il void Swap(T& x, T& y) {T tmp = x; x = y; y = tmp;}

#include<cstring>
const int MAXN = 10005, MAXM = 100005;
int n, m;
struct Edge
{
	int u, v, nxt;
}e[MAXM];
int cnt, head[MAXN];
void addedge(int u, int v)
{
	e[++cnt].u = u;
	e[cnt].v = v;
	e[cnt].nxt = head[u];
	head[u] = cnt;
}
int p[MAXN], sump[MAXN];
int dfn[MAXN], low[MAXN], id;
int ins[MAXN];
int stk[MAXN], s_top;
int family[MAXN], fcnt;
void tarjan(int u)
{
	dfn[u] = low[u] = ++id;
	ins[u] = 1;
	stk[++s_top] = u;
	for(rg int i = head[u]; i; i = e[i].nxt)
	{
		int v = e[i].v;
		if(!dfn[v])
		{
			tarjan(v);
			low[u] = Min(low[u], low[v]);
		}
		else if(ins[v])
		{
			low[u] = Min(low[u], dfn[v]);
		}
	}
	if(dfn[u] == low[u])//找到一个强连通分量
	{
		fcnt++;
		while(1)
		{
			int now = stk[s_top];
			s_top--;
			family[now] = fcnt;
			ins[now] = 0;
			sump[fcnt] += p[now];
			if(now == u) break; 
		}
	} 
}
int f[MAXN];
int ans;
void dp(int u)
{
	if(f[u]) return;
	f[u] = sump[u];
	int maxsum = 0;
	for(rg int i = head[u]; i; i = e[i].nxt)
	{
		int v = e[i].v;
		dp(v);
		maxsum = Max(maxsum, f[v]);
	} 
	f[u] += maxsum;
}
int main()
{
    //FileReset();
	io.r(n).r(m);
	for(rg int i = 1; i <= n; i++) io.r(p[i]);
	for(rg int i = 1; i <= m; i++)
	{
		rg int u, v;
		io.r(u).r(v);
		addedge(u, v);
	}
	for(rg int i = 1; i <= n; i++)
		if(!dfn[i]) tarjan(i);
	cnt = 0;
	memset(head, 0, sizeof head);
	for(rg int i = 1; i <= m; i++)
		if(family[e[i].u] != family[e[i].v])
			addedge(family[e[i].u], family[e[i].v]);//建新图
	for(rg int i = 1; i <= fcnt; i++)
		if(!f[i]) 
		{
			dp(i);
			ans = Max(ans, f[i]);
		} 
	io.wl(ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日居月诸Rijuyuezhu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值