参考资料
[1]星星之火的博客
[2]视频UESTCACM 每周算法讲堂第25期 Tarjan求强连通分量(up:qscqesze)
题目链接
解题思路
题面里也写的很详细了:缩点+DAG(有向无环图)DP
缩点我们采用Tarjan算法,而DP可以使用记忆化搜索的方法实现(省去了拓扑排序的过程)。
设
f
[
i
]
f[i]
f[i]表示包括以
i
i
i为根的一颗树可以拥有的最大点权和
则
f
[
i
]
=
p
[
i
]
+
M
a
x
(
f
[
j
]
)
,
v
(
i
,
j
)
∈
V
f[i]=p[i]+Max(f[j]),v(i,j)\in V
f[i]=p[i]+Max(f[j]),v(i,j)∈V
记忆化搜索即可
详细代码
#define rg register
#define il inline
#define DEBUG printf("[Passing [%s] in line %d.]\n", __func__, __LINE__)
#define putline putchar('\n')
#define putsp putchar(' ')
#define Rep(a, s, t) for(rg int a = s; a <= t; a++)
#define Repdown(a, t, s) for(rg int a = t; a >= s; a--)
typedef long long ll;
#include<cstdio>
#define rs freopen("test.in", "r", stdin), freopen("test.out", "w", stdout)
struct IO
{
IO(int set = 0) {if(set) rs;}
template<typename T> il IO r(T& x)const
{
x = 0; T f = 1; char ch = getchar();
for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
x *= f; return *this;
}
template<typename T> il IO w(T x)const
{
if(x < 0) {putchar('-'); x = -x;}
if(x >= 10) w(x / 10);
putchar(x % 10 + '0'); return *this;
}
template<typename T> il IO wl(const T& x)const {w(x), putline; return *this;}
template<typename T> il IO ws(const T& x)const {w(x), putsp; return *this;}
il IO l() {putline; return *this;}
il IO s() {putline; return *this;}
}io;
template<typename T> il T Max(const T& x, const T& y) {return y < x ? x : y;}
template<typename T> il T Min(const T& x, const T& y) {return y < x ? y : x;}
template<typename T> il void Swap(T& x, T& y) {T tmp = x; x = y; y = tmp;}
#include<cstring>
const int MAXN = 10005, MAXM = 100005;
int n, m;
struct Edge
{
int u, v, nxt;
}e[MAXM];
int cnt, head[MAXN];
void addedge(int u, int v)
{
e[++cnt].u = u;
e[cnt].v = v;
e[cnt].nxt = head[u];
head[u] = cnt;
}
int p[MAXN], sump[MAXN];
int dfn[MAXN], low[MAXN], id;
int ins[MAXN];
int stk[MAXN], s_top;
int family[MAXN], fcnt;
void tarjan(int u)
{
dfn[u] = low[u] = ++id;
ins[u] = 1;
stk[++s_top] = u;
for(rg int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].v;
if(!dfn[v])
{
tarjan(v);
low[u] = Min(low[u], low[v]);
}
else if(ins[v])
{
low[u] = Min(low[u], dfn[v]);
}
}
if(dfn[u] == low[u])//找到一个强连通分量
{
fcnt++;
while(1)
{
int now = stk[s_top];
s_top--;
family[now] = fcnt;
ins[now] = 0;
sump[fcnt] += p[now];
if(now == u) break;
}
}
}
int f[MAXN];
int ans;
void dp(int u)
{
if(f[u]) return;
f[u] = sump[u];
int maxsum = 0;
for(rg int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].v;
dp(v);
maxsum = Max(maxsum, f[v]);
}
f[u] += maxsum;
}
int main()
{
//FileReset();
io.r(n).r(m);
for(rg int i = 1; i <= n; i++) io.r(p[i]);
for(rg int i = 1; i <= m; i++)
{
rg int u, v;
io.r(u).r(v);
addedge(u, v);
}
for(rg int i = 1; i <= n; i++)
if(!dfn[i]) tarjan(i);
cnt = 0;
memset(head, 0, sizeof head);
for(rg int i = 1; i <= m; i++)
if(family[e[i].u] != family[e[i].v])
addedge(family[e[i].u], family[e[i].v]);//建新图
for(rg int i = 1; i <= fcnt; i++)
if(!f[i])
{
dp(i);
ans = Max(ans, f[i]);
}
io.wl(ans);
return 0;
}