LGOJ P3627 [APIO2009]抢掠计划 解题报告

题目链接

解题方法

声明:部分参考@javalyc的题解:洛谷博客博客园

A.解题思路1

首先,我们发现:如果我们抢掠了点 i i i,我们一定也可以抢掠掉 i i i所在的强连通分量,这样能够拿到更多的钱,结果肯定更优。故我们采用 T a r j a n Tarjan Tarjan算法缩点,求出图中每个强连通分量,计算每个强连通分量的总共的钱。

其次,缩完点后,我们可以在新图中,化点权为边权,然后使用SPFA算法跑最长路。然后判断酒吧位置的 d i s t dist dist的最大值。

注意:跑最长路时不要不要不要用Dijkstra,它的贪心在最长路中是 不! 正! 确! 的!

为什么是不正确的?跑最长路,其实就相当于在边权全部变号,跑最短路。Dijkstra跑最短路有个前提:边权不能为负。

补充:我们不必从每个点开始跑个Tarjan,只要从起点开始跑。(反正其他点也到不了)。但这样就需要加些特殊判断。(见代码)

详细代码

#define rg register
#define inl inline
#define DEBUG printf("[Passing [%s] in line %d.]\n", __func__, __LINE__)
#define putline putchar('\n')
#define putsp putchar(' ')
#define Rep(a, s, t) for(rg int a = s; a <= t; a++)
#define Repdown(a, t, s) for(rg int a = t; a >= s; a--)
typedef long long ll;
#include<cstdio>
#define rs freopen("test.in", "r", stdin), freopen("test.out", "w", stdout)
struct IO
{
	IO(int set = 0) {if(set) rs;} 
	void RS() {rs;} 
	template<typename T> inline IO r(T& x)const
	{
	    x = 0; T f = 1; char ch = getchar();
	    for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
	    for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
	    x *= f; return *this;
	}
	template<typename T> inline IO w(T x)const
	{
	    if(x < 0) {putchar('-'); x = -x;}
	    if(x >= 10) w(x / 10);
	    putchar(x % 10 + '0'); return *this;
	}
	template<typename T> inline IO wl(const T& x)const {w(x), putline; return *this;}
	template<typename T> inline IO ws(const T& x)const {w(x), putsp; return *this;}
	inline IO l() {putline; return *this;}
	inline IO s() {putline; return *this;}
}io;
template<typename T> inline T Max(const T& x, const T& y) {return y < x ? x : y;}
template<typename T> inline T Min(const T& x, const T& y) {return y < x ? y : x;}
template<typename T> inline void Swap(T& x, T& y) {T tmp = x; x = y; y = tmp;}
#include<stack>
#include<queue>
#include<cstring>
using namespace std;
const int MAXN = 500005, MAXM = 500005;
int N, M;
struct Edge
{
	int u, v, nxt, w;
}e[MAXM];
int head[MAXN], cnt;
void addedge(int u, int v, int w)
{
	e[++cnt].u = u;
	e[cnt].v = v;
	e[cnt].w = w;
	e[cnt].nxt = head[u];
	head[u] = cnt;
}
int mon[MAXN];
int dfn[MAXN], low[MAXN];
int ins[MAXN], tim;
int gg, g[MAXN];
int val[MAXN];
stack<int> stk;
void Tarjan(int u)
{
	dfn[u] = low[u] = ++tim;
	stk.push(u); ins[u] = 1;
	for(rg int i = head[u]; i; i = e[i].nxt)
	{
		int v = e[i].v;
		if(!dfn[v])
		{
			Tarjan(v);
			low[u] = Min(low[u], low[v]); 
		}
		else if(ins[v]) low[u] = Min(low[u], dfn[v]);
	}
	if(dfn[u] == low[u])
	{
		++gg;
		int now;
		do
		{
			now = stk.top(); stk.pop();
			ins[now] = 0;
			g[now] = gg;
			val[gg] += mon[now];
		}while(now != u);
	}
}
queue<int> q; 
int dist[MAXN], vist[MAXN];
void Spfa(int S)
{
	S = g[S];
	memset(dist, -127, sizeof dist);
	memset(vist, 0x00, sizeof vist);
	dist[S] = val[S];
	q.push(S);
	vist[S] = 1;
	while(!q.empty())
	{
		int u = q.front(); q.pop();
		vist[u] = 0;
		for(rg int i = head[u]; i; i = e[i].nxt)
		{
			int v = e[i].v, w = e[i].w;
			if(dist[v] < dist[u] + w)
			{
				dist[v] = dist[u] + w;
				if(!vist[v])
				{
					vist[v] = 1;
					q.push(v);
				}
			}
		} 
	}
}
int main()
{
    //io.RS();
	io.r(N).r(M);
	for(rg int i = 1; i <= M; i++)
	{
		int u, v;
		io.r(u).r(v);
		addedge(u, v, 0);
	}
	for(rg int i = 1; i <= N; i++) io.r(mon[i]);
	int S; io.r(S);
	Tarjan(S);
	cnt = 0;
	memset(head, 0x00, sizeof head);
	for(rg int i = 1; i <= M; i++)
	{
		int u = e[i].u, v = e[i].v;
		if(!g[u] || ! g[v]) continue;
		if(g[u] != g[v])
			addedge(g[u], g[v], val[g[v]]);
	}
	/*
	看到了吗,这种骚操作:
	只清空cnt和head数组,然后在老的e数组中枚举每条边
	(前向星存图的时候存个u是个好习惯)。
	这样能保证每条老边都能被考虑,并且
	不用存原来的边
	*/
	Spfa(S);
	int P; io.r(P);
	int ans = 0;
	for(rg int i = 1; i <= P; i++)
	{
		int k; io.r(k);
		k = g[k];
		ans = Max(ans, dist[k]);
	}
	io.wl(ans);
    return 0;
}

B.解题思路2

DP。

javalyc:DAG上搞DP是基本操作啊

嗯,所以这题我们可以先Tarjan缩点把图变DAG,再在新图上做DP。

由于状态 f [ i ] f[i] f[i]定义的是从 i i i点到 S S S点能得到的最大点权和,所以同上,我们建图只能建以 S S S为根的子树

一般来说,这种DP都有两种写法:

1)以BFS为基础的。 按拓扑序进行DP

2)以DFS为基础的。(其实本质上也是一种拓扑排序)。自然大部分人都喜欢这种咯,多好写。。。(本题解便以这种思路呈现)

同样,这道题的DP也有两种形式。(好像每个DP都有这两种形式)

1)顺推大法好: f [ u ] f[u] f[u]的值,可以通过边 ( u − &gt; v ) (u-&gt;v) (u>v),更新 f [ v ] f[v] f[v]的值。

2)记忆化搜索: 考虑 f [ u ] f[u] f[u]的值,可以由所有边 ( k − &gt; u ) (k-&gt;u) (k>u)得到,我们就可以先记搜出所有 f [ k ] f[k] f[k]的值,用所有 f [ k ] f[k] f[k]更新 f [ u ] f[u] f[u]的值。实际操作时考虑反向建边(本题解便采用这种方法)

详细代码

#define rg register
#define inl inline
#define DEBUG printf("[Passing [%s] in line %d.]\n", __func__, __LINE__)
#define putline putchar('\n')
#define putsp putchar(' ')
#define Rep(a, s, t) for(rg int a = s; a <= t; a++)
#define Repdown(a, t, s) for(rg int a = t; a >= s; a--)
typedef long long ll;
#include<cstdio>
#define rs freopen("test.in", "r", stdin), freopen("test.out", "w", stdout)
struct IO
{
	IO(int set = 0) {if(set) rs;} 
	void RS() {rs;} 
	template<typename T> inline IO r(T& x)const
	{
	    x = 0; T f = 1; char ch = getchar();
	    for(; ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
	    for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + int(ch - '0');
	    x *= f; return *this;
	}
	template<typename T> inline IO w(T x)const
	{
	    if(x < 0) {putchar('-'); x = -x;}
	    if(x >= 10) w(x / 10);
	    putchar(x % 10 + '0'); return *this;
	}
	template<typename T> inline IO wl(const T& x)const {w(x), putline; return *this;}
	template<typename T> inline IO ws(const T& x)const {w(x), putsp; return *this;}
	inline IO l() {putline; return *this;}
	inline IO s() {putline; return *this;}
}io;
template<typename T> inline T Max(const T& x, const T& y) {return y < x ? x : y;}
template<typename T> inline T Min(const T& x, const T& y) {return y < x ? y : x;}
template<typename T> inline void Swap(T& x, T& y) {T tmp = x; x = y; y = tmp;}
#include<stack>
#include<queue>
#include<cstring>
using namespace std;
const int MAXN = 500005, MAXM = 500005;
int N, M;
struct Edge
{
	int u, v, nxt, w;
}e[MAXM];
int head[MAXN], cnt;
void addedge(int u, int v, int w)
{
	e[++cnt].u = u;
	e[cnt].v = v;
	e[cnt].w = w;
	e[cnt].nxt = head[u];
	head[u] = cnt;
}
int mon[MAXN];
int dfn[MAXN], low[MAXN];
int ins[MAXN], tim;
int gg, g[MAXN];
int val[MAXN];
stack<int> stk;
void Tarjan(int u)
{
	dfn[u] = low[u] = ++tim;
	stk.push(u); ins[u] = 1;
	for(rg int i = head[u]; i; i = e[i].nxt)
	{
		int v = e[i].v;
		if(!dfn[v])
		{
			Tarjan(v);
			low[u] = Min(low[u], low[v]); 
		}
		else if(ins[v]) low[u] = Min(low[u], dfn[v]);
	}
	if(dfn[u] == low[u])
	{
		++gg;
		int now;
		do
		{
			now = stk.top(); stk.pop();
			ins[now] = 0;
			g[now] = gg;
			val[gg] += mon[now];
		}while(now != u);
	}
}
int f[MAXN];
void dp(int u) //这里u是新图中点的编号 
{
	if(f[u]) return;
	f[u] = val[u];
	for(rg int i = head[u]; i; i = e[i].nxt)
	{
		int v = e[i].v;
		dp(v);
		f[u] = Max(f[u], f[v] + val[u]);
	}
}
int main()
{
    //io.RS();
	io.r(N).r(M);
	for(rg int i = 1; i <= M; i++)
	{
		int u, v;
		io.r(u).r(v);
		addedge(u, v, 0);
	}
	for(rg int i = 1; i <= N; i++) io.r(mon[i]);
	int S; io.r(S);
	Tarjan(S);
	cnt = 0;
	memset(head, 0x00, sizeof head);
	for(rg int i = 1; i <= M; i++)
	{
		int u = e[i].u, v = e[i].v;
		if(!g[u] || ! g[v]) continue;
		if(g[u] != g[v])
			addedge(g[v], g[u], val[g[v]]);
		//反向建边
	}
	for(rg int i = 1; i <= gg; i++)
		dp(i);
	int P; io.r(P);
	int ans = 0;
	for(rg int i = 1; i <= P; i++)
	{
		int k; io.r(k);
		k = g[k];
		ans = Max(ans, f[k]);
	}
	io.wl(ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日居月诸Rijuyuezhu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值