HDU-2037 今年暑假不AC
题目:
“今年暑假不AC?”
“是的。”
“那你干什么呢?”
“看世界杯呀,笨蛋!”
“@#$%^&*%…”
确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会抛开电脑,奔向电视了。
作为球迷,一定想看尽量多的完整的比赛,当然,作为新时代的好青年,你一定还会看一些其它的节目,比如新闻联播(永远不要忘记关心国家大事)、非常6+7、超级女生,以及王小丫的《开心辞典》等等,假设你已经知道了所有你喜欢看的电视节目的转播时间表,你会合理安排吗?(目标是能看尽量多的完整节目)
Input
输入数据包含多个测试实例,每个测试实例的第一行只有一个整数n(n<=100),表示你喜欢看的节目的总数,然后是n行数据,每行包括两个数据Ti_s,Ti_e (1<=i<=n),分别表示第i个节目的开始和结束时间,为了简化问题,每个时间都用一个正整数表示。n=0表示输入结束,不做处理。
Output
对于每个测试实例,输出能完整看到的电视节目的个数,每个测试实例的输出占一行。
Sample Input
12
1 3
3 4
0 7
3 8
15 19
15 20
10 15
8 18
6 12
5 10
4 14
2 9
0
Sample Output
5
#include<iostream>
#include<cstdio>
using namespace std;
#define N 105
int main()
{
int n,min,maxn,count,m;
int a[N],b[N];
while(scanf("%d",&n) != EOF)
{
if(!n) return 0;
for(int i = 0;i < n;i++)
{
scanf("%d %d",&a[i],&b[i]);
}
for(int i = 0;i < n;i++)
{
min = i;
for(int j = i + 1;j < n;j++)
{
if(b[min] > b[j])
{
min = j;
}
}
swap(a[min],a[i]);
swap(b[min],b[i]);
}
m = b[0];
count = 1;
for(int i = 1;i < n;i++)
{
if(a[i] >= m)
{
m = b[i];
count++;
}
}
cout << count << endl;
}
return 0;
}
这道题我将开始的时间用数组a[]来保存,将结束时间用数组b[]来保存。
先说说本人错误的想法,刚开始的时候,我是希望把这两个数组的顺序按照开始时间的大小从小到大进行排列,然后通过双重for循环从第一个节目开始,如果第一个节目的结束时间小于之后数组开始的时间则将记录次数的变量count加1,随后将这个数组的结束时间在和后面节目开始时间比较,直到遍历到最后一个节目结束,但是这样做是有问题的。就拿题目中的例子来说,第二个节目3结束,此时我既可以选择(3,4)组的节目也可以选择(3,8)组的节目(而且你并不知道之后节目哪个时间是最短的),所以会产生错误。显然这种方法是不可取的。
现在来说这道题的正确做法,同样也是升序排列,只不过此时是要以节目的结束时间为基准进行升序排列(简单来说就是节目结束早的排在前面,节目结束晚的排在后面,因为如果想要看更多的节目,当然是希望当前的节目越早结束越好了。),然后将第一个节目结束的时间与后面的节目进行比较,找到后面节目开始的时间小于等于这个节目结束的时间,以此类推,每次都把count加1。这样只需要一次遍历就可以计算出最大值了。(注意:在开始的时候需要把count初始化为1,因为这是第一个节目已经计算在内)其实这种思路就属于贪心算法。
贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。