ALDS1_12_B:Single Source Shortest Path I

ALDS1_12_B:Single Source Shortest Path I

题目:
https://cn.vjudge.net/problem/Aizu-ALDS1_12_B

代码如下:

#include<bits/stdc++.h>
using namespace std;
#define MAX 105
#define NIL (1 << 21)
#define WHITE 0
#define BLACK 1

int n,a[MAX][MAX];

void dijkstra()
{
    int color[MAX],d[MAX],u,mina;
    for(int i = 0;i < n;i++)//把所有结点初始化为白色 结点到起点的距离初始化为无穷大
    {
        color[i] = WHITE;
        d[i] = NIL;
    }
    d[0] = 0;//起点到起点的距离为0
    while(1)
    {
        u = -1;
        mina = NIL;
        for(int i = 0;i < n;i++)
        {
            if(color[i] != BLACK && mina > d[i])//挑选出最短权值
            {
                mina = d[i];
                u = i;
            }
        }
        if(u == -1) break;//当所有点的最短路径都已确定就退出循环
        color[u] = BLACK;//表示当前该点的最短路径以及确定
        for(int v = 0;v < n;v++)
        {
            if(color[v] != BLACK && a[u][v] != NIL)//尝试到达改点是否有更短路径
            {
                if(d[v] > d[u] + a[u][v]) d[v] = d[u] + a[u][v];//若有则替换
            }
        }
    }
    for(int i = 0;i < n;i++) cout << i << " " << d[i] << endl;
}

int main()
{
    int u,v,k,c;//n表示结点总数 u表示结点序号 k表示结点出度 v表示u的相邻结点 c表示u,v的距离
    scanf("%d",&n);
    for(int i = 0;i < n;i++)
    {
        for(int j = 0;j < n;j++) a[i][j] = NIL;
    }
    for(int i = 0;i < n;i++)
    {
        scanf("%d%d",&u,&k);
        for(int j = 0;j < k;j++)
        {
            scanf("%d%d",&v,&c);
            a[u][v] = c;
        }
    }
    dijkstra();
    return 0;
}

这道题是要求顶点到其他各点的最短路径(其实就是单源最短路径),再求图单源最短路径的算法之中,我们要学习的是Dijkstra算法,下面来介绍一下Dijkstra算法的具体实现。
Dijkstra算法的具体实现:
设图G = (V,E)所以顶点的集合为V,起点为s,最短路径树中包含的顶点集合为S。在各计算步骤中,我们将选出最短路径树的边和顶点并将其添加至S。
对于各顶点i,设仅经由S内顶点的s到i的最短路径成本为d[i],i在最短路径树中的父结点为p[i]。

1.初始状态下将S置空。
初始化s的d[s] = 0;除s以外,所有属于V的顶点i的d[i] = (1 << 21)。
2.循环进行下述处理,直到S = V为止。
从V - S中选出d[u]最小的顶点u

将u添加至S,同时将与u相邻且属于V-S的所有顶点v的值按照下述方式更新
if d[u] + w(u,v) < d[v]
d[v] = d[u] + w(u,v)
在步骤2的各处理执行结束后(即选择下一个u之前),d[v] 中记录着从s出发,仅经由S内顶点抵达v的最短路径成本。也就是说,当所有处理进行完毕后,V中所有顶点的d[v]都记录着s到v的最短路径距离。

在本题介绍的dijkstra算法中,d值得最小顶点v可以通过o(v)求得。另外,如果算法使用邻接矩阵,则需要o(v)来搜索与顶点u相邻的顶点。上述处理总共要运行v次,所以算法复杂度为o(v^2)。
要注意,dijkstra算法不可以应用于包含负权值的图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值