题目:
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100
Sample Output
3
?
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAX 200
struct Node{int a,b,weight;}node[MAX];
int p[MAX],n,m,ans;
bool flag;
int find_father(int x)
{
while(x != p[x]) x = p[x];
return x;
}
void combine(int x,int y)
{
int c = find_father(x);
int d = find_father(y);
if(c == d) return;
p[c] = d;
}
void init(int m)
{
flag = true;
memset(node,0,sizeof(node));
for(int i = 1;i <= m;i++) p[i] = i;
}
bool cmp(Node b,Node c) {return b.weight < c.weight;}
int kruskal()
{
Node node1;
int res = 0;
sort(node,node + n,cmp);
for(int i = 0;i < n;i++){
node1 = node[i];
if(find_father(node1.a) != find_father(node1.b)){
combine(node1.a,node1.b);
res += node1.weight;
}
}
return res;
}
int main()
{
while(~scanf("%d%d",&n,&m)){
if(n == 0) break;
init(m);
for(int i = 0;i < n;i++)
cin >> node[i].a >> node[i].b >> node[i].weight;
ans = kruskal();
for(int i = 2;i <= m;i++){
if(find_father(1) != find_father(i)){
cout << "?" << endl;
flag = false;
break;
}
}
if(flag) cout << ans << endl;
}
return 0;
}
这是一道基础题,直接用最小生成树可以解决,此外再加一次判断是否可以构成树。这里我用的是Kruskal算法。Kruskal算法实现最小生成树基本思路就是把所有边的权值从小到大进行排序,然后依次从小到大进行选择,如果2个端点属于同一集合则放弃添加,不然就添加(这里使用的并查集进行操作)。因为如果2个端点属于同一集合再添加就会形成环了。
最后依次将所有的点与点1进行判断,判断二者是否是同一集合里的,如果有一个点与点1不是同一集合的,那么2者就不通路。