题目:
蒜头君买了一堆桃子不知道个数,第一天吃了一半的桃子,还不过瘾,有多吃了一个。以后他每天吃剩下的桃子的一半还多一个,到 n 天只剩下一个桃子了。蒜头君想知道一开始买了多少桃子。
输入格式
输入一个整数 n(2≤n≤60),代表第 n只剩了一个桃子。
输出格式
输出买的桃子的数量。
样例输入1
2
样例输出1
4
样例输入2
3
样例输出2
10
代码如下:
递归版:
#include<bits/stdc++.h>
using namespace std;
int a[35],n;
int f(int m)
{
if(m == n) return 1;
return 2 * f(m + 1) + 2;
}
int main()
{
cin >> n;
a[n] = 1;
cout << f(1) << endl;
return 0;
}
动态规划版:
#include<bits/stdc++.h>
using namespace std;
int a[35],n;
int main()
{
cin >> n;
a[n] = 1;
for(int i = n;i >= 2;i--) a[i - 1] = 2 * a[i] + 2;
cout << a[1] << endl;
return 0;
}
这道题刚开始想到用递归做,后来发现递归的过程中会计算很多重复的子问题,所以想到了动态规划会简化很多。因为这一天桃子的个数等于前一天桃子的个数减去其一半再减去1。如果用a[n]代表第n天桃子的个数可以得出方程:a[n] = a[n - 1] - (a[n - 1] / 2 + 1)。经过化简那么a[n - 1] = 2 * a[n] + 2。