[蓝桥杯][2017年第八届真题]包子凑数

题目:
题目描述
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
样例输入
2
4
5
样例输出
6

代码如下:

#include<bits/stdc++.h>
using namespace std;
#define MAX 100000
int dp[MAX],a[105];
int gcd(int a,int b) {return b == 0 ? a : gcd(b,a % b);}
int main()
{
	int n,g,num = 0;
	cin >> n;
	for(int i = 0;i < n;i++) cin >> a[i];
	g = gcd(a[0],a[1]);
	for(int i = 2;i < n;i++) g = gcd(g,a[i]);
	if(g != 1) cout << "INF" << endl;
	else{
		dp[0] = 1;
		for(int i = 0;i < n;i++)
			for(int j = 0;j < MAX;j++)
				if(dp[j]) dp[j + a[i]] = 1;
		for(int i = 0;i < MAX;i++) if(!dp[i]) num++;
		cout << num << endl;
	}
	return 0;
}

首先要求这些数的gcd,如果gcd的值不为1,那么凑不出包子的数量将会无限多种。因为如果gcd不为1,那么凑出包子的个数只能是gcd的倍数,其他的数就凑不出了,所以输出"INF"。判断完gcd之后,那就是一个完全背包问题了,对于数量n的包子,每笼你都可以拿无限个,dp[i]代表拿i个包子是否可能,如果可以则尝试多拿一笼,最后从头到尾遍历一遍,把不能凑出来的包子个数累计一下输出就可以了。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值