随着科学技术的不断发展,数据工程师也在不断的成长,在他们成长过程中他们需要更多的关注设计决策和与管理层的沟通。我是一个大数据程序员,建了一个大数据资源共享群593188212 每天分享大数据学习资料和学习方法 ,于是,有经验的数据工程师可以帮助年轻的数据工程师,可以利用自己的经验帮助决定最合适的设计决策,能够更好地为自己和公司带来好处。而作为数据工程师在成长的过程中,需要掌握以下4个技能。
1.能够简化复杂的东西
数据工程师倾向于使用每个问题和每个解决方案中所知的每种技术和算法。反过来,这又会造成难以维护的复杂系统。数据工程师确实需要复杂和抽象的建模以及大量复杂的技术(从Hadoop到Tensorflow)。由于这个领域周围的复杂性,这使得开发系统和算法也很复杂。但是,像大多数其他涉及工程设计的领域,综合考虑,减少其自身的复杂性往往效果更好
2.指导如何在没有主键的情况下将数据网格化
厉害的数据专家应该提供的重要价值之一是将可能不具有主要或明显联系的数据集捆绑在一起。如果数据科学家有能力在这些数据中查找统计模式,那么他将有能力帮助决策者做出明智的选择。但是,这种能力是非常难得的。
与数据打过交道的人知道它们并不总是很好地集成在一个数据库中。财务数据通常与IT服务管理数据分开,外部数据源可能不具有相同的聚合级别。而有时候数据所存在的价值需要与其他部门和系统的数据一起才能显现,因此这成为了一个难题。
3.有选择优先项目的能力
作为一名大数据工程师,你 必须知道如何解释可能不会实现的项目的投资回报率。这是关于能够拥有—清楚地说明价值以及优先考虑长期目标与短期目标的沟通能力。团队中总是有很多的项目和项目要求,使他们应接不暇。有经验的团队需要有成员带头帮助他们的经理人,去决定哪些项目是值得的。
4.能够开发健全的和最优的系统
制定在受控环境下运行的算法或模型是一回事。把一个强大的模型整合到一个现场处理大量数据的系统中是另外一回事。根据公司的不同,有时数据科学家只需要开发算法本身,然后开发人员或机器学习工程师将负责投入生产。
数据工程师是一个复杂的领域,需要了解数据,统计数据,编程和主题。为了发展,数据工程师需要能够将这些复杂的东西简化并提炼成算法。他们需要能够更多地关注设计决策。这有助于最大限度地发挥他们的知识和经验。