如何判断一个算法的好坏

文章探讨了算法的效率问题,强调了时间复杂度和空间复杂度在分析算法性能中的重要性。通过实际测试和理论分析两种方式来评估算法效率,并详细介绍了不同时间复杂度级别,如常数型O(1)、对数型O(logn)、线性型O(n)、线性对数型O(nlogn)、平方型O(n^2)、立方型O(n^3)、K次方型O(n^k)以及阶乘型O(n!),强调应尽量选择时间复杂度更低的算法以提高程序性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.前言

        一个优秀的算法需要满足正确性、可读性、健壮性、高效性。一般前三个比较容易做到,高效性是不容易被开发人员自己发现的,效率低不可怕,可怕的是写代码的人不知道效率低。不同的算法对性能的影响是很大的,本文就高效性来探讨。

2.通过实际测试得出效率

        用测试手段来精确计算出算法执行的时间。

优点:

        可以得到算法具体的执行时间。

缺点:

        (1)算法受不同设备的影响,不同设备跑出来的时间可能不同,最终导致得到的结果不可信;

        (2)如果算法比较耗时,就得一直等着计算完了才能得到结果,比较浪费时间;

3.用理论知识事先分析得出效率

        算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,有时候时间效率与空间效率是相互矛盾的,要时间则要牺牲空间,要空间则要牺牲时间,也就是常说的空间换时间/时间换空间。

        在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度,本文主要讲时间复杂度。

3.1.概念:

        一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

3.2.表示方法:

        用大O符号(Big O notation)描述函数渐进行为,主要有以下几种复杂度:

        

        写算法时,我们应该尽量选择曲线平滑的时间复杂度。

        

3.2.1.常数型O(1)

  • 常见于赋值和引用等简单操作
  • 算法消耗不随变量增长而增长,性能最佳
  • 无论代码执行多少行,即使有几千几万行,时间复杂度都为O(1)
  • 实际开发过程中,一次递归的时间复杂度也为O(1)。因为O(1^n)无论n为多少都为O(1)
int i = 1;
int j = 2;
i++;
j--;
int k = i + j;

代码分析: i为1,j为2,k为3。 时间复杂度为O(1)。

3.2.2.对数型O(log n)

  • 常用代码执行次数为x,n为目标数字。符合2^x=n,推导出x=log2(n)(log n)的情况
  • 算法消耗随n的增长而增长,性能较好
int i = 100;
int j = 1;
while(j < i){
    j = j * 2
}

代码分析: j为128。 i为100,时间复杂度为O(log2(100))。 因为Math.log2(100)≈6.64,所以最终的时间复杂度为O(6.65)。

3.2.3.线性型O(n)

  • 常见于一次for循环,while循环
  • 算法消耗随n的增长而增长,性能一般
  • 无论n值有多大,时间复杂度都为O(n)
int n = 100;
int j = 0;
for(int i = 0; i < n; i++){
    j = i;
}

代码分析: i为100,j为99。 n为100,时间复杂度为O(100)。

3.2.4.线性对数型O(n log n)

  • 常用于一个对时间复杂度为O(log2(n))的代码执行一个n次循环
  • 算法消耗随n的增长而增长,性能较差
int n = 100;
for(int m = 0; m < n; m++){
    int i = 1;
    while(i < n){
        i = i * 2
    }
}

代码分析: i为128。 m为100,n为100,时间复杂度为O(m log2(n))。 因为100* Math.log2(100)≈664.39,所以最终的时间复杂度为O(664.39)。

3.2.5.平方型O(n^2)、立方型O(n^3)、K次方型O(n^k)

  • 最常见的算法时间复杂度,可用于快速开发业务逻辑
  • 常见于2次for循环,或者3次for循环,以及k次for循环
  • 算法消耗随n的增长而增长,性能糟糕
  • 实际开发过程中,不建议使用K值过大的循环,否则代码将非常难以维护
int n = 100
int v = 0;
for(int i = 0; i < n; i++){
    for(int j = 0; j < n; j++){
        v = v + j + i;
    }
}

代码分析: v为990000,i为100,j为100. n为100,时间复杂度为O(100^2)。 也就是O(10000)。

立方型O(n^3)、K次方型O(n^k)和平方型O(n^2)类似,无非是多了几次循环。

// 立方型O(n^3)
for(int i =0; i < n; i++){
    for(int j = 0; j < n; j++){
        for(int m = 0; m < n; m++){

        }
    }
}
// K次方型O(n^k)
for(int i = 0; i < n; i++){
    for(int j = 0; j < n; j++){
        for(int m = 0; m<n; m++){
            for(int p = 0; p < n; p++){
                ... // for循环继续嵌套下去,k值不断增大
            }
        }
    }
}

3.2.6.阶乘型O(n!)

  • 极其不常见
  • 算法消耗随n的增长而增长,性能极其糟糕
void method(n) {
  for(int i = 0; i < n; i++) {
      method(n-1);
  }
}

阶乘型O(n!)的时间复杂度按照(n!+(n-1)!+(n-2)!+ ··· + 1) +((n-1)!+(n-2)!+ ··· + 1)··· 的方式去计算。


 

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孵不出鸡的坏蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值