数据结构-二叉搜索树

简介:

二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
在这里插入图片描述

构造过程:

二叉搜索树的节点各项数据域同其他树形结构一样,包括数据域,指向自己左孩子和右孩子的指针。

插入:

二叉搜索树的插入同其他树形结构在形式上是相同的,都是选择合适的节点位置,并将其添加。区别在于位置的选择策略上,根据二叉搜索树的定义可知,其左孩子小于它,右孩子均大于它。因此插入是一个不断拿当前节点的数据域同其根节点比较的过程。如果待插入节点小于根节点,则按照策略要求,需要将其放入左孩子位置,若左孩子位置为空,即为插入位置,若不为空则继续比较直至找到合适位置。

其他:

根据插入策略可得:任意根节点,其左孩子小于它,右孩子均大于它。因此根据二叉树中的中序遍历可以将无序序列有序输出。

C语法实现:
#include<iostream>
using namespace std;

typedef struct Node{
 	int data;
 	Node *left, *right;
}*Btree;

void init_node(Btree &t, int e){
 	t = new Node;
 	t->data = e;
 	t->left = NULL;
 	t->right = NULL;
}
void insert_node(Btree &t, int e){
 	if(!t){
  		Btree temp;
  		init_node(temp, e);
  		t = temp;
 	} else if(t->data < e) 
  		insert_node(t->right, e);
 	else if(t->data > e)
  		insert_node(t->left, e);
}
void create_BStree(Btree &t, int n){
 	int e; cin >> e;//输入根节点data 
 	init_node(t, e);
 	for(int i = 0; i < n; i++){
  		int x; cin >> x;//输入序列 
  		insert_node(t, x);
 	}
} 
void print_tree(Btree &t){
 	if(!t) return;
 	print_tree(t->left);
	cout << t->data << " ";
 	print_tree(t->right);
}

int main(){
 	int n; cin >> n;//待排序列个数 
 	Btree t;//根节点 
 	create_BStree(t, n);
 	print_tree(t);
 	return 0;
}
查找:
递归查找
Btree search_node(Btree &t, int e){
 	if(!t || t->data == e) return t;
 	else if(t->data > e) return search_node(t->left, e);
 	else if(t->data < e) return search_node(t->right, e);
}

使用上述的print_tree()函数也可以实现查找过程。

迭代查找:

迭代查找类似二分查找。至少在逻辑上是相似的,如果相等则返回,大于则去右边找,小于则去左边找。

Btree search_iteration(Btree &t, int e){
 	Btree temp = t;
 	while(temp){
  		if(temp->data == e) return temp;
  		else if(temp->data > e)
   			temp = temp->left;
  		else if(temp->data < e)
   			temp = temp->right;
 	}
 	return NULL;
}

这么写其实是有bug的。如果返回NULL,而主函数又输出查找结果,则程序直接会崩溃掉。因此可以将查找函数返回类型改为bool或者在主函数中加入逻辑判断。

节点删除:
删除分析:

为方便表示,待删除节点用P表示,待删除节点的父节点用F表示。
节点的删除主要分三种情况:

  1. P既有左孩子又有右孩子
  2. P仅有左孩子或者右孩子
  3. P为叶子节点

待删除节点位置:

  • 为根节点
  • 为普通节点

为什么要考虑P的位置呢?若P为根节点,则其父节点F为NULL,对NULL操作会引起程序崩溃。
P的三种情况中2、3较为容易理解,因此以下,先分析2、3两种情况。

关于2、3种情况分析:

情况2: P仅有一个孩子,因此直接让F指向P的孩子即可。
根据二叉搜索树的特点:其左孩子均不大于它,其右孩子均不小于它。P的孩子放在F下仍满足该特点。例如,P是F的左孩子。 P仅有左孩子L,则满足L小于P,L小于F,则F可直接指向L。若P为F的右孩子,则P大于F,L虽小于P,但是L大于F,因此F直接指向P仅有的孩子仍满足二叉搜索树的特性。
情况3: P为叶子节点,因此F直接指向NULL,且释放P所占内存即可。
因为P为空,因此F的左孩子或者右孩子直接指向NULL即可。

关于情况1的分析:
法一:

因为P存在左右孩子,因此直接指向其中的一个孩子,将破坏二叉搜索树的特性。但是分析可以发现,选取P左子树中的最大值节点取代P的位置后,序列仍满足搜索树特性(P左子树中的最大值仍小于P右子树的根,且大于左子树内的任意一个节点)。

法二:

通过法一的分析,可以发现,P右子树中的任意节点均大于左子树中的节点。因此将P右子树挂到P左子树中的最大值节点下,即可满足搜索树的特性。但是无疑会增加树的高度。

代码示例:
int delete_node(Btree &t, int e){
  	Btree p = t, q;
  	Btree f = NULL; 
  	while(p){
    		if(p->data == e) break;
    		f = p;
    		if(p->data > e)
      		p = p->left;
    		else
      		p = p->right;
  	}
  	if(!p) return 0;
  	q = p;
  	if(p->left && p->right){
    		Btree s = p->left;
    		while(s->right){
      		q = s;
      		s = s->right;
    	}
    	p->data = s->data;
    	if(q != p) q->right = s->left;
    		else q->left = s->left;
    		delete s;
    		return 1;
  	} else if(!p->left){//左空 
    		p = p->right; 
  	} else if(!p->right){//右空 
    		p = p->left;
  	}
  	if(!f) t = p;
  	else if(q == f->left) f->left = p;
 	else f->right = p;
  	delete q;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值