磁化强度以及磁化率推导1-郎之万顺磁性

该博客详细介绍了郎之万顺磁性物质的磁化强度和磁化率的推导过程,从概率分布、物质模型到严格的能量分析。通过玻尔兹曼分布和配分函数,讨论了磁矩在磁场中的能量,并给出磁化强度和磁化率的具体计算。在高温弱场下,利用泰勒展开对磁化率进行近似处理。
摘要由CSDN通过智能技术生成

1.推导思路

1.1概率分布

总体基于正则系综的概率分布,即与外界只有能量交换,温度为T的系统,粒子分布在不同的状态上,满足玻尔兹曼分布,每个状态的概率为 P i = 1 Z e − β E i P_i=\frac{1}{Z} e^{-\beta E_i} Pi=Z1eβEi β = 1 k B T \beta=\frac{1}{k_BT} β=kBT1,这里的 E i E_i Ei是系统总能量, Z = ∑ e − β E i Z=\sum e^{-\beta E_i} Z=eβEi用以使总概率为1,又叫配分函数。

1.2物质模型

认为物质是由众多带有磁矩为 μ \mu μ的粒子构成,对于一个粒子的磁矩来说,其取值的分布可以用正则系综来计算。能量可以只写出与磁矩相关的部分,严格证明见 1.3

1.3严格证明求粒子的磁矩均值时可只考虑磁矩在磁场中的能量

对于所有粒子组成的固体系统来说,可以看做与外界只有能量交换,所以可以使用正则系综

1.3.1写出整个系统的能量

整个系统的能量总共有三部分,动能,粒子之间的势能,粒子磁矩在外界磁场中能量,所以写作
E ( { p i } , { q i } , { μ i } ) = ∑ i p i 2 2 m + 1 2 ∑ i j U i j − ∑ i μ ⃗ i ⋅ B ⃗ E(\{p_i\},\{q_i\},\{\mu_i\})=\sum_i{p_i^2\over 2m}+{1\over 2}\sum_{ij}U_{ij}-\sum_i \vec\mu_i\cdot\vec B E({ pi},{ qi},{ μi})=i2mpi2+21ijUijiμ iB
其中 { p i } \{p_i\} { pi}表示 p 1 , p 2 , ⋯ p_1,p_2,\cdots p1,p2,,表示第一个粒子的动量,第二个粒子的动量,……。 { q i } , { μ i } \{q_i\},\{\mu_i\} { qi},{ μi}是同样的表示。

1.3.2写出配分函数

Z = ∑ { p i } , { q i } , { μ i } e − β E ( { p i } , { q i } , { μ i } ) = ( ∑ { p i } , { q i } e − β ( ∑ i p i 2 2 m + 1 2 ∑ i j U i j ) ) ( ∑ { μ i } e − β ∑ i μ ⃗ i ⋅ B ⃗ ) Z=\sum_{\{p_i\},\{q_i\},\{\mu_i\}}e^{-\beta E(\{p_i\},\{q_i\},\{\mu_i\})}=\Big(\sum_{\{p_i\},\{q_i\}}e^{-\beta\big(\sum_i{p_i^2\over 2m}+{1\over 2}\sum_{ij}U_{ij}\big)}\Big)\Big(\sum_{\{\mu_i\}}e^{-\beta\sum_i \vec\mu_i\cdot\vec B}\Big) Z={ pi},{ qi},{ μi}eβE({ pi},{ qi},{ μi})=({ pi},{ qi}eβ(i2mpi2+21ijUij))({ μi}eβiμ iB )

1.3.3求解物理量的平均值

对于一个只与某个粒子的磁矩 μ k \mu_k μk有关的物理量 B ( μ k ) B(\mu_k) B(μk),其平均值为
< B ( μ k ) > = 1 Z ∑ { p i }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值