文章目录
1.推导思路
1.1概率分布
总体基于正则系综的概率分布,即与外界只有能量交换,温度为T的系统,粒子分布在不同的状态上,满足玻尔兹曼分布,每个状态的概率为 P i = 1 Z e − β E i P_i=\frac{1}{Z} e^{-\beta E_i} Pi=Z1e−βEi, β = 1 k B T \beta=\frac{1}{k_BT} β=kBT1,这里的 E i E_i Ei是系统总能量, Z = ∑ e − β E i Z=\sum e^{-\beta E_i} Z=∑e−βEi用以使总概率为1,又叫配分函数。
1.2物质模型
认为物质是由众多带有磁矩为 μ \mu μ的粒子构成,对于一个粒子的磁矩来说,其取值的分布可以用正则系综来计算。能量可以只写出与磁矩相关的部分,严格证明见 1.3
1.3严格证明求粒子的磁矩均值时可只考虑磁矩在磁场中的能量
对于所有粒子组成的固体系统来说,可以看做与外界只有能量交换,所以可以使用正则系综
1.3.1写出整个系统的能量
整个系统的能量总共有三部分,动能,粒子之间的势能,粒子磁矩在外界磁场中能量,所以写作
E ( { p i } , { q i } , { μ i } ) = ∑ i p i 2 2 m + 1 2 ∑ i j U i j − ∑ i μ ⃗ i ⋅ B ⃗ E(\{p_i\},\{q_i\},\{\mu_i\})=\sum_i{p_i^2\over 2m}+{1\over 2}\sum_{ij}U_{ij}-\sum_i \vec\mu_i\cdot\vec B E({
pi},{
qi},{
μi})=i∑2mpi2+21ij∑Uij−i∑μi⋅B
其中 { p i } \{p_i\} {
pi}表示 p 1 , p 2 , ⋯ p_1,p_2,\cdots p1,p2,⋯,表示第一个粒子的动量,第二个粒子的动量,……。 { q i } , { μ i } \{q_i\},\{\mu_i\} {
qi},{
μi}是同样的表示。
1.3.2写出配分函数
Z = ∑ { p i } , { q i } , { μ i } e − β E ( { p i } , { q i } , { μ i } ) = ( ∑ { p i } , { q i } e − β ( ∑ i p i 2 2 m + 1 2 ∑ i j U i j ) ) ( ∑ { μ i } e − β ∑ i μ ⃗ i ⋅ B ⃗ ) Z=\sum_{\{p_i\},\{q_i\},\{\mu_i\}}e^{-\beta E(\{p_i\},\{q_i\},\{\mu_i\})}=\Big(\sum_{\{p_i\},\{q_i\}}e^{-\beta\big(\sum_i{p_i^2\over 2m}+{1\over 2}\sum_{ij}U_{ij}\big)}\Big)\Big(\sum_{\{\mu_i\}}e^{-\beta\sum_i \vec\mu_i\cdot\vec B}\Big) Z={ pi},{ qi},{ μi}∑e−βE({ pi},{ qi},{ μi})=({ pi},{ qi}∑e−β(∑i2mpi2+21∑ijUij))({ μi}∑e−β∑iμi⋅B)
1.3.3求解物理量的平均值
对于一个只与某个粒子的磁矩 μ k \mu_k μk有关的物理量 B ( μ k ) B(\mu_k) B(μk),其平均值为
< B ( μ k ) > = 1 Z ∑ { p i }