求两数最大公约数

1.题目分析

分别用四种方法(辗转相除法、穷举法、更相减损法、Stein算法)求出两数的最大公约数和最小公倍数,并在给定不同规模测试数据的情况下的平均运行时间。

2.算法构造
辗转相除法
辗转相除法(又名欧几里德法)C语言中用于计算两个正整数a,b的最大公约数和最小公倍数,实质它依赖于下面的定理:

g c d ( a , b ) = { a b=0 g c d ( b , a m o d b ) b!=0 gcd(a,b)= \begin{cases} a& \text{b=0}\\ gcd(b,a mod b)& \text{b!=0} \end{cases} gcd(a,b)={agcd(b,amodb)b=0b!=0

根据这一定理可以采用函数嵌套调用和递归调用形式进行求两个数的最大公约数和最小公倍数,现分别叙述如下:

函数嵌套调用
其算法过程为: 前提:设两数为a,b设其中a 做被除数,b做除数,temp为余数
1、大数放a中、小数放b中;
2、求a/b的余数;
3、若temp=0则b为最大公约数;
4、如果temp!=0则把b的值给a、temp的值给a;
5、返回第二步;

算法流程图如下:

在这里插入图片描述

② 穷举法
穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数 。

算法流程图:
在这里插入图片描述

③ 更相减损法
更相减损术,是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
翻译成现代语言如下:
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。所以更相减损法也叫等值算法。

算法流程图:

在这里插入图片描述

④ Stein算法
Stein算法由J. Stein 1961年提出,这个方法也是计算两个数的最大公约数。来研究一下最大公约数的性质,发现有 gcd( kx,ky ) = kgcd( x,y ) 这么一个非常好的性质。试取 k=2,则有 gcd( 2x,2y ) = 2 * gcd( x,y )。很快联想到将两个偶数化小的方法。那么一奇一个偶以及两个奇数的情况如何化小呢?
先来看看一奇一偶的情况: 设有2x和y两个数,其中y为奇数。因为y的所有约数都是奇数,所以 a = gcd( 2x,y ) 是奇数。根据2x是个偶数不难联想到,a应该是x的约数。我们来证明一下:(2x)%a=0,设2x=n
a,因为a是奇数,2x是偶数,则必有n是偶数。又因为 x=(n/2)*a,所以 x%a=0,即a是x的约数。因为a也是y的约数,所以a是x和y的公约数,有 gcd( 2x,y ) <= gcd( x,y )。因为gcd( x,y )明显是2x和y的公约数,又有gcd( x,y ) <= gcd( 2x,y ),所以 gcd( 2x,y ) = gcd( x,y )。至此,我们得出了一奇一偶时化小的方法。
再来看看两个奇数的情况:设有两个奇数x和y,不妨设x>y,注意到x+y和x-y是两个偶数,则有 gcd( x+y,x-y ) = 2 * gcd( (x+y)/2,(x-y)/2 ),那么 gcd( x,y ) 与 gcd( x+y,x-y ) 以及 gcd( (x+y)/2,(x-y)/2 ) 之间是不是有某种联系呢?为了方便设 m=(x+y)/2 ,n=(x-y)/2 ,容易发现 m+n=x ,m-n=y 。设 a = gcd( m,n ),则 m%a=0,n%a=0 ,所以 (m+n)%a=0,(m-n)%a=0 ,即 x%a=0 ,y%a=0 ,所以a是x和y的公约数,有 gcd( m,n )<= gcd(x,y)。再设 b = gcd( x,y )肯定为奇数,则 x%b=0,y%b=0 ,所以 (x+y)%b=0 ,(x-y)%b=0 ,又因为x+y和x-y都是偶数,跟前面一奇一偶时证明a是x的约数的方法相同,有 ((x+y)/2)%b=0,((x-y)/2)%b=0 ,即 m%b=0 ,n%b=0 ,所以b是m和n的公约数,有 gcd( x,y ) <= gcd( m,n )。所以 gcd( x,y ) = gcd( m,n ) = gcd( (x+y)/2,(x-y)/2 )。
整理一下,对两个正整数 x>y :
1.均为偶数 gcd( x,y ) =2gcd( x/2,y/2 );
2.均为奇数 gcd( x,y ) = gcd( (x+y)/2,(x-y)/2 );
2.x奇y偶 gcd( x,y ) = gcd( x,y/2 );
3.x偶y奇 gcd( x,y ) = gcd( x/2,y ) 或 gcd( x,y )=gcd( y,x/2 );
现在已经有了递归式,还需要再找出一个退化情况。注意到 gcd( x,x ) = x ,就用这个。

  1. 算法实现
    A、辗转相除法
    ①函数嵌套调用
int divisor (int a,int b)    /*自定义函数求两数的最大公约数*/
{
      int  temp;          /*定义整型变量*/
   if(a<b)             /*通过比较求出两个数中的最大值和最小值*/
   { temp=a;a=b;b=temp;} /*设置中间变量进行两数交换*/
   while(b!=0)           /*通过循环求两数的余数,直到余数为0*/
    {
     temp=a%b;
     a=b;              /*变量数值交换*/
      b=temp;
    }
  return (a);            /*返回最大公约数到调用函数处*/ 
}
int multiple (int a,int b)  /*自定义函数求两数的最小公倍数*/
{
  int divisor (int a,int b); /*自定义函数返回值类型*/
  int temp;
  temp=divisor(a,b);  /*再次调用自定义函数,求出最大公约数*/
  return  (a*b/temp); /*返回最小公倍数到主调函数处进行输出*/
}

②函数递归调用
int gcd (int a,int b)
{  if(a%b==0)
      return b;   
else  
    return gcd(b,a%b);
  }

B、穷举法

int divisor (int a,int b) /*自定义函数求两数的最大公约数*/
{
    int  temp;          /*定义义整型变量*/
    temp=(a>b)?b:a;    /*采种条件运算表达式求出两个数中的最小值*/
    while(temp>0)     
    {
       if (a%temp==0&&b%temp==0) /*只要找到一个数能同时被a,b所整除,则中止循环*/
          break;    
       temp--;      /*如不满足if条件则变量自减,直到能被a,b所整除*/
    }
  return (temp); /*返回满足条件的数到主调函数处*/
}

C、更相减损法

int gcd(int m,int n)
{
	int i=0,temp,x;
	while(m%2==0 && n%2==0)  //判断m和n能被多少个2整除
	{
		m/=2;
		n/=2;
		i+=1;
	}
	if(m<n)     //m保存大的值
	{
		temp=m;
		m=n;
		n=temp;
	}
	while(x)
	{
		x=m-n;
		m=(n>x)?n:x;
		n=(n<x)?n:x;
		if(n==(m-n))
			break;
	}
	if(i==0)
		return n;
	else 
		return (int )pow(2,i)*n;
}

D、Stein算法

int Stein( unsigned int x, unsigned int y )
  /* return the greatest common divisor of x and y */
{
        int factor = 0;
        int temp;
        if ( x < y )
        {
                temp = x;
                x = y;
                y = temp;
        }
        if ( 0 == y )
        {
                return 0;
        }
        while ( x != y )
        {
                if ( x & 0x1 )
                {/* when x is odd */
                        if ( y & 0x1 )
                        {/* when x and y are both odd */
                                y = ( x - y ) >> 1;
                                x -= y;
                        }
                        else
                        {/* when x is odd and y is even */
                                y >>= 1;
                        }
                }
                else
                {/* when x is even */
                        if ( y & 0x1 )
                        {/* when x is even and y is odd */
                                x >>= 1;
                                if ( x < y )
                                {
                                        temp = x;
                                        x = y;
                                        y = temp;
                                }
                        }
                        else
                        {/* when x and y are both even */
                                x >>= 1;
                                y >>= 1;
                                ++factor;
                        }
                }
        }
        return ( x << factor );
}
  1. 调试、测试及运行结果
    辗转相除法运行截图
    在这里插入图片描述
    平均运行时间(20组):273.063微秒
    穷举法运行截图
    在这里插入图片描述
    平均运行时间(20组):7242141.213微秒
    更相减损法:
    在这里插入图片描述
    平均运行时间(20组):5324121.332微秒
    Stein算法:
    在这里插入图片描述
    平均运行时间(20组):10237863.623微秒
  2. 经验归纳
    求两数最大公约数的普通方法有上述前三种方法,分别是辗转相除法、穷举法、更相减损法,这三种方法使用与一般大小的数,从运行时间计算来看,其中辗转相除法最快,穷举法和更相减速法运行时间较大,但两者相差不算太大,最后一种Stein算法可以实现较大数位的数字求最大公约数,解决了欧几里得算法的缺陷。每个程序里面添加了求函数执行时间的函数,刚开始加的函数误差太大,以至于比较不出每种算法的执行时间,最后通过查阅资料找到了另一种解决方法,成功地解决了时间问题,此次实验报告对我来说还是挺有用的。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值