自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 利用Epoll实现Web服务器(黑马Linux网络编程项目)

Epoll实现Web服务器文章目录Epoll实现Web服务器项目概述:代码流程图主要模块分析1. init-listen-fd函数2. do_accept 函数3. do_read函数(**整个项目最核心的部分**)总结:源码: [链接](https://github.com/liushuai839/epoll-Web-server).项目概述:本项目主要是对黑马linux网络编程中的Web服务器进行复现以及总结,项目主要功能是 在本地运行服务器代码后,利用浏览器可以访问服务器上的文件.项目结果如

2021-02-03 16:25:16 971 6

原创 Reppoints代码解析

最近看了RePpoints的论文,然后想看看官方代码,以更好的理解论文,但是发现网上竟然没有一篇关于相关代码的解析,有点好奇为什么。官方代码是在mmdetecion框架上实现的,顺便也可以学习一下。因为自己也是小白,只做了其中部分注释(也只能看懂这些了),所以有大佬愿意分享自己见解的话,我举双手欢迎。下面就是 官方代码中head部分的代码:from __future__ import divisionimport numpy as npimport torchimport torch.nn as

2020-08-12 14:40:54 2026 1

原创 ATSS 论文阅读笔记以及核心代码解析

文章目录1 论文题目2 论文目的3 论文实现4 核心代码解读1 论文题目Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection本篇论文也是入选了2020年的CVPR,算是今年CVPR里目标检测方向为数不多的论文之一。2 论文目的首先,本文作者指出在目标检测的方法中,anchor-based的方法与anchor-free的方法之间主要的区别

2020-07-29 14:29:05 1999 2

原创 Ubuntu16.04 vscode调试stl容器(vector,map,string)不显示数值,只显示地址段

今天下午找了两个小时的相关问题,怕以后忘记,在此做个备份原因是 新安装的vscode没有gdb版本以及插件pretty-priner的问题参考网址:https://codertw.com/%E7%A8%8B%E5%BC%8F%E8%AA%9E%E8%A8%80/641183/

2020-07-07 15:32:08 5938 6

原创 Ternimator 配置

灰色背景,白色字体,带一定透明度,怕下次忘了[global_config]focus = system suppress_multiple_term_dialog = True title_transmit_bg_color = "#d30102"[keybindings][layouts] [[default]] [[[child1]]] parent = window0 profile = default type = Terminal

2020-06-22 17:07:58 254

原创 ThiNet 论文笔记(只包括算法部分,不涉及实验结果)

文章目录IntroductionPart 1: pruning1.1 ThiNet pruning 的总体结构1.2 收集训练样本1.3 滤波器选择和权重更新1.4 整合权重更新和滤波器选择Part 2: Post-processingIntroduction论文题目:ThiNet: Pruning CNN Filters for a Thinner Net模型总体结构:pruning 和 post-processing基础知识:多通道卷积的理解Part 1: pruning1.1 Thi

2020-06-04 17:05:43 485

原创 局部立体匹配

局部立体匹配写一篇博客作为最近的工作总结吧,也算是一份文献索引。根据Scharstein[1]的结论,局部立体算法主要包括以下四个步骤:代价计算,代价聚合,视差计算,视差优化;而创新工作主要体现在前两个方面,下面将根据这四个方面对这部分文献进行总结,本部分总结不包括实验结果(都没看实验部分),只是一些原理总结,为接下来的课题打下基础代价计算这部分的创新主要体现在对代价评价的标准(代价的描述)的创新,文献[2][3]中对于代价描述采用的是x和y方向上的梯度之和(sum of gradient mat

2020-05-27 15:47:11 787

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除