- 博客(3)
- 收藏
- 关注
原创 线性回归+逻辑回归
机器学习 第一回:线性回归和对数几率回归 1.一元线性逻辑回归 任务: 1>求偏置b的推导公式 2>求偏置w的推导公式 3> w的向量化 1.1操作流程 1.2证明E(w,b)损失函数是凸函数+对b的偏置导数 1.3 求偏置w的推导公式 1.4 对w的向量化 2.多元线性逻辑回归 1>对损失函数改写 2>E(w,x)是凸函数的证明 3>求最优解w 2.1对损失函数改写 2.2 E(w,x)是凸函数的证明 2.3求w的最优解 3.对数几率回归(逻辑回归)
2021-01-05 17:20:53 237 1
原创 Day01~了解逻辑回归理论
学习目标:Day01~了解逻辑回归理论 学习内容: 1、 什么是逻辑回归? 逻辑回归是监督学习(数据自带标签),是分类的算法,简单的说就是根据数据自 带的标签把数据进行分类。(如性别,机关) 区别于线性回归是对数值型的数据进行预测(如房价,股价) **·**优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低; **·**缺点:容易欠拟合,分类精度可能不高 2、 线性回归实现分类的原理: 逻辑回归也被称为广义线性回归模型,它与线性回归模型的形式基本上相同,都具有 ax+b,其中a和b是待求参数
2020-12-15 22:03:49 92
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人