「React」一文带你了解React diff 算法

1. diff 算法

实际上,diff 算法探讨的就是虚拟 DOM 树发生变化后,生成 DOM 树更新补丁的方式。它通过对比新旧两株虚拟 DOM 树的变更差异,将更新补丁作用于真实 DOM,以最小成本完成视图更新。
在这里插入图片描述

具体的流程如下:

  • 真实的 DOM 首先会映射为虚拟 DOM;
  • 当虚拟 DOM 发生变化后,就会根据差距计算生成 patch,这个 patch 是一个结构化的数据,内容包含了增加、更新、移除等;
  • 根据 patch 去更新真实的 DOM,反馈到用户的界面上。
    在这里插入图片描述

一个简单的例子:

import React from 'react'
export default class ExampleComponent extends React.Component {
  render() {
    if(this.props.isVisible) {
       return <div className="visible">visbile</div>;
    }
     return <div className="hidden">hidden</div>;
  }
}

这里,首先假定 ExampleComponent 可见,然后再改变它的状态,让它不可见 。映射为真实的 DOM 操作是这样的,React 会创建一个 div 节点。

<div class="visible">visbile</div>

当把 visbile 的值变为 false 时,就会替换 class 属性为 hidden,并重写内部的 innerText 为 hidden。这样一个生成补丁、更新差异的过程统称为 diff 算法。

在整个过程中你需要注意以下三点:
(1)更新时机
更新时机就是触发更新、进行差异对比的时机。根据前面的章节内容可以知道,更新发生在setState、Hooks 调用等操作以后。此时,树的结点发生变化,开始进行比对。那这里涉及一个问题,即两株树如何对比差异? 这里就需要使用遍历算法。
(2)遍历算法
遍历算法是指沿着某条搜索路线,依次对树的每个节点做访问。通常分为两种:深度优先遍历和广度优先遍历。

  • 深度优先遍历,是从根节点出发,沿着左子树方向进行纵向遍历,直到找到叶子节点为止。然后回溯到前一个节点,进行右子树节点的遍历,直到遍历完所有可达节点。
  • 广度优先遍历,则是从根节点出发,在横向遍历二叉树层段节点的基础上,纵向遍历二叉树的层次。

React 的diff 算法采用了深度优先遍历算法。因为广度优先遍历可能会导致组件的生命周期时序错乱,而深度优先遍历算法就可以解决这个问题。
(3)优化策略
优化策略是指 React 对 diff 算法做的优化手段。虽然深度优先遍历保证了组件的生命周期时序不错乱,但传统的 diff 算法也带来了一个严重的性能瓶颈,算法复杂度达到 O(n),其中 n 表示树的节点总数。O(n) 就意味着如果要展示 1000 个节点,就要依次执行数十亿次的比较。正如计算机科学中常见的优化方案一样,React 用了一个非常经典的手法将复杂度降低为 O(n),也就是分治,即通过“分而治之”这一巧妙的思想分解问题。

因此,想要将 diff 思想引入虚拟 DOM ,就需要设计一种稳定高效的 diff 算法。那么 React 中 diff 算法到底是如何实现的呢?

React 结合 Web 界面的特点做出了三个简单的假设,使得 Diff 算法复杂度直接降低到 O(n)。

  • Web UI 中 DOM 节点跨层级的移动操作特别少,可以忽略不计;
  • 两个相同组件产生类似的 DOM 结构,不同的组件产生不同的 DOM 结构;
  • 对于同一层次的一组子节点,它们可以通过唯一的 id 进行区分。

基于以上三个假设,React 分别对 tree diff、component diff 以及 element diff 进行算法优化。

(1)tree diff

由于跨节点层级的移动操作特别少到可以忽略不计,针对这一点,React 通过对两个树的同一层的节点进行比较,当发现节点已经不存在时,则该节点及其子节点会被完全删除掉,不会用于进一步的比较。这样只需要对树进行一次遍历,便能完成整个 DOM 树的比较,如下图所示:
在这里插入图片描述

当然,以上操作都限于对同一层的节点进行比较,那如果出现了 DOM 节点跨层级的移动操作,React diff 会有怎样的表现呢?
在这里插入图片描述

A 节点被整个移动到 D 节点下,直观的考虑 DOM Diff 操作应该是:

A.parent.remove(A)
D.append(A)

但由于 React 只会简单的考虑同层节点的位置变换,对于不同层的节点,只有简单的创建和删除。当根节点发现子节点中 A 不见了,就会直接销毁 A 。而当 D 发现自己多了一个子节点 A,则会创建一个新的 A 作为子节点。因此对于这种结构的转变的实际操作是:

A.destroy()
A = new A()
A.append(new B())
A.append(new C())
D.append(A)

由此可发现,当出现节点跨层级移动时,并不会出现想象中的移动操作,而是以 A 为根节点的树被整个重新创建,这是一种影响 React 性能的操作,因此 React 官方建议不要进行 DOM 节点跨层级的操作。

在实现自己的组件时,保持稳定的 DOM 结构会有助于性能的提升。例如,我们有时可以通过 CSS 隐藏或显示某些节点,而不是真的移除或添加 DOM 节点。

(2)component diff

React 是基于组件构建应用的,对于组件间的比较所采取的策略也是简洁高效:

  • 如果是同一类型的组件,按照原策略继续比较虚拟 DOM Tree ;
  • 如果不是,则将该组件判断为 dirty component,从而替换整个组件下的所有子节点;
  • 对于同一类型的组件,有可能其虚拟 DOM 没有任何变化,如果能够确切的知道这点那可以节省大量的 diff 运算时间,因此 React 允许用户通过 shouldComponentUpdate() 来判断该组件是否需要进行 diff 。

如下图,当 component D 改变为 component G 时,即使这两个 component 结构相似,一旦 React 判断 D 和 G 是不同类型的组件,就不会比较二者的结构,而是直接删除 component D,重新创建 component G 以及其子节点。虽然当两个 component 是不同类型但结构相似时,React diff 会影响性能,但正如 React 官方博客所言:不同类型的 component 是很少存在相似 DOM tree 的机会,因此这种极端因素很难在实现开发过程中造成重大影响的。
在这里插入图片描述

以下是 React 源码:

updateChildren: function(nextNestedChildrenElements, transaction, context) {
  updateDepth++;
  var errorThrown = true;
  try {
    this._updateChildren(nextNestedChildrenElements, transaction, context);
    errorThrown = false;
  } finally {
    updateDepth--;
    if (!updateDepth) {
      if (errorThrown) {
        clearQueue();
      } else {
        processQueue();
      }
    }
  }
}

(3)element diff

当节点处于同一层级时,React Diff 提供了三种节点操作:

  • INSERT_MARKUP(插入):新的 component 类型不在老集合里, 即是全新的节点,需要对新节点执行插入操作;

  • MOVE_EXISTING(移动):在老集合有新 component 类型,且 element 是可更新的类型,generateComponentChildren 已调用 receiveComponent,这种情况下 prevChild=nextChild,就需要做移动操作,可以复用以前的 DOM 节点;

  • REMOVE_NODE(删除):老 component 类型,在新集合里也有,但对应的 element 不同则不能直接复用和更新,需要执行删除操作,或者老 component 不在新集合里的,也需要执行删除操作。

源码如下:

function enqueueInsertMarkup(parentInst, markup, toIndex) {
  updateQueue.push({
    parentInst: parentInst,
    parentNode: null,
    type: ReactMultiChildUpdateTypes.INSERT_MARKUP,
    markupIndex: markupQueue.push(markup) - 1,
    content: null,
    fromIndex: null,
    toIndex: toIndex
  })
}
function enqueueMove(parentInst, fromIndex, toIndex) {
  updateQueue.push({
    parentInst: parentInst,
    parentNode: null,
    type: ReactMultiChildUpdateTypes.MOVE_EXISTING,
    markupIndex: null,
    content: null,
    fromIndex: fromIndex,
    toIndex: toIndex
  })
}
function enqueueRemove(parentInst, fromIndex) {
  updateQueue.push({
    parentInst: parentInst,
    parentNode: null,
    type: ReactMultiChildUpdateTypes.REMOVE_NODE,
    markupIndex: null,
    content: null,
    fromIndex: fromIndex,
    toIndex: null
  })
}

如下图,模拟定义了“新”和“老”两个集合,老集合中包含节点:A、B、C、D,更新后的新集合中包含节点:B、A、D、C,两个集合的顺序发生了一些 改变。此时新集合和老集进行 diff 差异化对比时,发现 B != A,则创建并插入 B 至新集合,删除老集合 A;以此类推,创建并插入 A、D 和 C,删除 B、C 和 D。
在这里插入图片描述

通过上面的操作,可以发现,这样操作起来有些繁琐,因为节点内容都是相同的,只是位置发生了变化,如果全部采用删除、创建的操作,会很低效,其实只需要将这些节点进行位置移动即可。因此,React提出了优化策略:添加唯一的key 来区分。

2. key 的作用

上面的例子中,因为节点内容都是相同的,只是位置发生了变化,如果全部采用删除、创建的操作,会很低效。针对这一现象,React 提出优化策略:允许开发者对同一层级的同组子节点,添加唯一 key 进行区分。 虽然只是小小的改动,性能上却发生了翻天覆地的变化。

新老集合所包含的节点,如下图所示,新老集合进行 Diff 差异化对比,通过 key 发现新老集合中的节点都是相同的节点,因此无需进行节点删除和创建,只需要将老集合中节点的位置进行移动,更新为新集合中节点的位置,此时 React 进行 Diff 运算之后,便会执行:B、D 不做任何操作,A、C 进行移动操作,即可。操作图示如下:
在这里插入图片描述

那么,如此高效的 diff 到底是如何运作的呢?让我们通过源码进行详细分析。

首先对新集合的节点进行循环遍历,for (name in nextChildren),通过唯一 key 可以判断新老集合中是否存在相同的节点,if (prevChild === nextChild),如果存在相同节点,则进行移动操作,但在移动前需要将当前节点在老集合中的位置与 lastIndex 进行比较,if (child._mountIndex < lastIndex) ,则进行节点移动操作,否则不执行该操作。这是一种顺序优化手段,lastIndex 一直在更新,表示访问过的节点在老集合中最右的位置(即最大的位置),如果新集合中当前访问的节点比 lastIndex 大,说明当前访问节点在老集合中就比上一个节点位置靠后,则该节点不会影响其他节点的位置,因此不用添加到差异队列中,即不执行移动操作,只有当访问的节点比 lastIndex 小时,才需要进行移动操作。

刚刚的图示,可以更为清晰直观的描述 diff 的差异对比过程:

  1. 节点 B 判断
    从新集合中取得 B,判断老集合中存在相同节点 B,通过对比节点位置判断是否进行移动操作,B 在老集合中的位置 B._mountIndex = 1,此时 lastIndex = 0,不满足 child._mountIndex < lastIndex 的条件,因此不对 B 进行移动操作;更新 lastIndex = Math.max(prevChild._mountIndex, lastIndex) ,其中 prevChild._mountIndex 表示 B 在老集合中的位置,则 lastIndex = 1 ,并将 B 的位置更新为新集合中的位置prevChild._mountIndex = nextIndex ,此时新集合中 B._mountIndex = 0,nextIndex++ 进入下一个节点的判断。

  2. 节点 A 判断
    从新集合中取得 A,判断老集合中存在相同节点 A,通过对比节点位置判断是否进行移动操作,A 在老集合中的位置 A._mountIndex = 0 ,此时 lastIndex = 1,满足 child._mountIndex < lastIndex 的条件,因此对 A 进行移动操作 enqueueMove(this, child._mountIndex, toIndex) ,其中 toIndex 其实就是 nextIndex,表示 A 需要移动到的位置;更新 lastIndex = Math.max(prevChild._mountIndex, lastIndex) ,则 lastIndex = 1 ,并将 A 的位置更新为新集合中的位置 prevChild._mountIndex = nextIndex,此时新集合中A._mountIndex = 1,nextIndex++ 进入下一个节点的判断。

  3. 节点 D 判断
    从新集合中取得 D,判断老集合中存在相同节点 D,通过对比节点位置判断是否进行移动操作,D 在老集合中的位置 D._mountIndex = 3,此时 lastIndex = 1,不满足 child._mountIndex < lastIndex 的条件,因此不对 D 进行移动操作;更新 lastIndex = Math.max(prevChild._mountIndex, lastIndex) ,则 lastIndex = 3,并将 D 的位置更新为新集合中的位置 prevChild._mountIndex = nextIndex,此时新集合中D._mountIndex = 2,nextIndex++ 进入下一个节点的判断。

  4. 节点 C 判断
    从新集合中取得 C,判断老集合中存在相同节点 C,通过对比节点位置判断是否进行移动操作,C 在老集合中的位置 C._mountIndex = 2,此时 lastIndex = 3 ,满足 child._mountIndex < lastIndex 的条件,因此对 C 进行移动操作 enqueueMove(this, child._mountIndex, toIndex) ;更新 lastIndex = Math.max(prevChild._mountIndex, lastIndex) ,则 lastIndex = 3 ,并将 C 的位置更新为新集合中的位置 prevChild._mountIndex = nextIndex ,此时新集合中 C._mountIndex = 3,nextIndex++ 进入下一个节点的判断,由于 C 已经是最后一个节点,因此 diff 到此完成。

以上主要分析新老集合中存在相同节点但位置不同时,对节点进行位置移动的情况,如果新集合中有新加入的节点且老集合存在需要删除的节点,那么 React diff 又是如何对比运作的呢?

以下图为例:
在这里插入图片描述

下面是整个 Diff 算法后,React 执行的节点操作:

  • 从新集合中取得 B,判断老集合中存在相同节点 B,由于 B 在老集合中的位置 B._mountIndex = 1 ,此时lastIndex = 0,因此不对 B 进行移动操作;更新 lastIndex = 1 ,并将 B 的位置更新为新集合中的位置 B._mountIndex = 0,nextIndex++ 进入下一个节点的判断。
  • 从新集合中取得 E,判断老集合中不存在相同节点 E,则创建新节点 E;更新 lastIndex = 1 ,并将 E 的位置更新为新集合中的位置, nextIndex++ 进入下一个节点的判断。
  • 从新集合中取得 C,判断老集合中存在相同节点 C,由于 C 在老集合中的位置 C._mountIndex = 2lastIndex = 1 ,此时 C._mountIndex > lastIndex ,因此不对 C 进行移动操作;更新 lastIndex = 2 ,并将 C 的位置更新为新集合中的位置,nextIndex++ 进入下一个节点的判断。
  • 从新集合中取得 A,判断老集合中存在相同节点 A,由于 A 在老集合中的位置 A._mountIndex = 0lastIndex = 2 ,此时 A._mountIndex < lastIndex ,因此对 A 进行移动操作;更新 lastIndex = 2 ,并将 A 的位置更新为新集合中的位置, nextIndex++ 进入下一个节点的判断。
  • 当完成新集合中所有节点 diff 时,最后还需要对老集合进行循环遍历,判断是否存在新集合中没有但老集合中仍存在的节点,发现存在这样的节点 D,因此删除节点 D,到此 diff 全部完成。

这一过程执行操作的源码如下:

_updateChildren: function(nextNestedChildrenElements, transaction, context) {
  var prevChildren = this._renderedChildren;
  var nextChildren = this._reconcilerUpdateChildren(
    prevChildren, nextNestedChildrenElements, transaction, context
  );
  if (!nextChildren && !prevChildren) {
    return;
  }
  var name;
  var lastIndex = 0;
  var nextIndex = 0;
  for (name in nextChildren) {
    if (!nextChildren.hasOwnProperty(name)) {
      continue;
    }
    var prevChild = prevChildren && prevChildren[name];
    var nextChild = nextChildren[name];
    if (prevChild === nextChild) {
      // 移动节点
      this.moveChild(prevChild, nextIndex, lastIndex);
      lastIndex = Math.max(prevChild._mountIndex, lastIndex);
      prevChild._mountIndex = nextIndex;
    } else {
      if (prevChild) {
        lastIndex = Math.max(prevChild._mountIndex, lastIndex);
        // 删除节点
        this._unmountChild(prevChild);
      }
      // 初始化并创建节点
      this._mountChildAtIndex(
        nextChild, nextIndex, transaction, context
      );
    }
    nextIndex++;
  }
  for (name in prevChildren) {
    if (prevChildren.hasOwnProperty(name) &&
        !(nextChildren && nextChildren.hasOwnProperty(name))) {
      this._unmountChild(prevChildren[name]);
    }
  }
  this._renderedChildren = nextChildren;
},
// 移动节点
moveChild: function(child, toIndex, lastIndex) {
  if (child._mountIndex < lastIndex) {
    this.prepareToManageChildren();
    enqueueMove(this, child._mountIndex, toIndex);
  }
},
// 创建节点
createChild: function(child, mountImage) {
  this.prepareToManageChildren();
  enqueueInsertMarkup(this, mountImage, child._mountIndex);
},
// 删除节点
removeChild: function(child) {
  this.prepareToManageChildren();
  enqueueRemove(this, child._mountIndex);
},
_unmountChild: function(child) {
  this.removeChild(child);
  child._mountIndex = null;
},
_mountChildAtIndex: function(
  child,
  index,
  transaction,
  context) {
  var mountImage = ReactReconciler.mountComponent(
    child,
    transaction,
    this,
    this._nativeContainerInfo,
    context
  );
  child._mountIndex = index;
  this.createChild(child, mountImage);
},

当然,React diff 还是存在些许不足与待优化的地方,如下图所示,若新集合的节点更新为:D、A、B、C,与老集合对比只有 D 节点移动,而 A、B、C 仍然保持原有的顺序,理论上 diff 应该只需对 D 执行移动操作,然而由于 D 在老集合的位置是最大的,导致其他节点的_mountIndex < lastIndex,造成 D 没有执行移动操作,而是 A、B、C 全部移动到 D 节点后面的现象。
在这里插入图片描述

注意: 在开发过程中,尽量减少类似将最后一个节点移动到列表首部的操作,当节点数量过大或更新操作过于频繁时,在一定程度上会影响 React 的渲染性能。

3. 总结

(1)diff 算法的三级策略

diff算法可以总结为三个策略,分别从树、组件及元素三个层面进行复杂度的优化:

策略一:忽略节点跨层级操作场景,提升比对效率。(基于树进行对比)
这一策略需要进行树比对,即对树进行分层比较。树比对的处理手法是非常“暴力”的,即两棵树只对同一层次的节点进行比较,如果发现节点已经不存在了,则该节点及其子节点会被完全删除掉,不会用于进一步的比较,这就提升了比对效率。

策略二:如果组件的 class 一致,则默认为相似的树结构,否则默认为不同的树结构。(基于组件进行对比)
在组件比对的过程中:

  • 如果组件是同一类型则进行树比对;
  • 如果不是则直接放入补丁中。

只要父组件类型不同,就会被重新渲染。这也就是为什么 shouldComponentUpdatePureComponentReact.memo 可以提高性能的原因。

策略三:同一层级的子节点,可以通过标记 key 的方式进行列表对比。(基于节点进行对比)
元素比对主要发生在同层级中,通过标记节点操作生成补丁。节点操作包含了插入、移动、删除等。其中节点重新排序同时涉及插入、移动、删除三个操作,所以效率消耗最大,此时策略三起到了至关重要的作用。通过标记 key 的方式,React 可以直接移动 DOM 节点,降低内耗。

(2)Fiber 设计对 diff 算法的影响

React 16 引入的 Fiber 设计给 diff 算法带来了一定的影响。

Fiber 机制下节点与树分别采用 FiberNode 与 FiberTree 进行重构。FiberNode 使用了双链表的结构,可以直接找到兄弟节点与子节点,使得整个更新过程可以随时暂停恢复。FiberTree 则是通过 FiberNode 构成的树。

Fiber 机制下,整个更新过程由 current 与 workInProgress 两株树双缓冲完成。当 workInProgress 更新完成后,通过修改 current 相关指针指向的节点,直接抛弃老树,虽然非常简单粗暴,却非常合理。

(3)开发注意事项

根据 diff 算法的特点,在开发时我们需要注意以下三点:

  • 根据 diff 算法的设计原则,应尽量避免跨层级节点移动。
  • 通过设置唯一 key 进行优化,尽量减少组件层级深度。因为过深的层级会加深遍历深度,带来性能问题。
  • 设置 shouldComponentUpdate 或者 React.pureComponet 减少 diff 次数。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CUG-GZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值