- 博客(360)
- 资源 (4)
- 问答 (2)
- 收藏
- 关注
原创 如何在Matplotlib中绘制多个Y轴刻度
Matplotlib是一个功能强大的Python库,在它的帮助下,我们可以绘制条形图,图表,绘图,比例等。在本文中,我们将尝试在Matplotlib中绘制多个Y轴刻度。
2025-01-22 20:09:05
575
原创 机器学习 | 在scikit-learn中创建自定义交叉验证生成器
不平衡的数据集:标准方法可能无法很好地处理类不平衡,需要在训练期间进行过采样等技术。时间序列数据:时间序列数据中的时间依赖关系需要特殊处理以防止信息泄露。分组数据:当数据按某些特征分组时,在交叉验证期间维护这些组至关重要。过采样:在数据集不平衡的情况下,在训练期间对少数类进行过度采样可能是有益的。可以设计自定义生成器来处理此问题。自定义拆分逻辑:有时,需要根据特定需求自定义拆分逻辑,例如按某些特征分组或处理缺失数据。
2025-01-19 20:21:15
914
原创 Python | 使用Matplotlib进行图案填充和边缘颜色分离的三种方法
Matplotlib中的分离图案填充和边缘颜色增强了绘图的视觉吸引力和功能。通过使用rcParams、两次绘图和自定义Patch对象等方法,可以实现高级别的自定义。本文提供了关于如何实现这些技术的全面指南,并提供了完整的代码示例。尝试使用这些方法来创建符合您的特定要求和首选项的图。
2025-01-15 19:17:28
261
原创 ANOVA:在Python中构建和理解ANOVA(方差分析)
ANOVA(方差分析)是一种统计技术,用于确定三个或更多独立(不相关)组的平均值之间是否存在任何统计学显著差异。它有助于检验关于组间均值差异的假设,在比较多个组时特别有用。在Python中,可以使用scipy.stats模块中的f_oneway函数来执行单因素方差分析(one-way ANOVA),或者使用statsmodels库中的ANOVA类来进行更复杂的方差分析。
2025-01-11 18:39:37
959
原创 Python | 使用Matplotlib绘制散点趋势线
Matplotlib允许对图进行广泛的自定义,包括趋势线的外观。您可以修改趋势线的颜色、线型和宽度。plt.show()在Matplotlib中向散点图添加趋势线是可视化和理解变量之间关系的强大方法。无论您需要简单的线性趋势线还是更复杂的多项式趋势线,Matplotlib都提供了创建信息丰富且视觉上吸引人的图表所需的工具。
2025-01-07 18:43:29
473
原创 如何在Python中比较列表中的相邻元素
在Python中,我们可以通过多种方式来对比列表中的相邻项。我们没有看到任何直接或间接的应用程序来比较相邻的元素,例如确定最近的趋势,优化用户体验,股票市场分析等等。本文将探讨在Python中如何比较列表中的相邻元素的几种方法。
2025-01-02 17:27:12
256
原创 Python | 如何在Matplotlib中仅绘制热图的上/下三角形
仅绘制热图的上三角形或下三角形可以使您的可视化更清晰,更易于解释,特别是在处理相关矩阵等对称矩阵时。通过使用NumPy创建掩码,使用Matplotlib或Seaborn绘制热图,您可以轻松实现此效果。
2024-12-29 23:22:14
372
原创 使用Streamlit部署机器学习模型
计算机能够从经验中学习,而无需明确编程。机器学习是目前最热门的领域之一,世界各地的顶级公司都在使用它来改善他们的服务和产品。但是没有使用在Jupyter Notebook中训练的机器学习模型。因此,我们需要部署这些模型,以便每个人都可以使用它们。在本文中,我们将首先训练Iris Species分类器,然后使用Streamlit部署模型,Streamlit是一个开源应用程序框架,用于轻松部署ML模型。Streamlit允许您使用简单的Python脚本为机器学习项目创建应用程序。
2024-12-26 22:13:28
443
原创 python中使用时间间隔操作及技巧
Python 中处理时间间隔和日期时间的操作通常涉及datetime模块,它提供了丰富的功能来处理日期和时间。
2024-12-23 19:28:56
340
原创 机器学习 | 非线性回归拟合数据时的离群值检测
离群值检测是非线性回归分析的一个重要内容。通过采用目视检查,统计方法和鲁棒的回归技术相结合,研究人员可以确保准确可靠的参数估计。使用先进的方法,如ROUT方法和蒙特卡罗模拟能进一步提高了分析的鲁棒性。正确处理离群值会产生更值得信赖的模型和更好的基于数据的决策。
2024-12-20 19:05:52
883
原创 Python | 对于DataFrame中所有行数据比较的几种方法
将DataFrame中的每一行与所有其他行进行比较是数据分析中的常见任务,其应用范围从重复检测到数据验证。虽然嵌套循环方法很直观,但对于大型数据集来说可能效率低下。利用Pandas的apply函数和矢量化操作可以显著提高性能。通过将结果存储在列表中,我们可以有效地分析和利用比较结果。
2024-12-17 19:58:16
781
原创 Python | 数据可视化中常见的4种标注及示例
以上这些示例涵盖了Python数据可视化中常见的4种标注方式,它们可以单独使用或组合使用,以创建更具解释性和吸引力的图表。
2024-12-11 23:37:12
606
原创 如何在Pandas中使用透视表后去掉多级索引
Pandas是一个功能强大且通用的Python库,用于数据操作和分析。它最有用的特性之一是数据透视表,它允许您重塑和汇总数据。但是,使用数据透视表通常会导致多级(分层)索引,这可能很麻烦。在本文中,我们将探讨如何在Pandas中使用透视表后去掉多级索引,使您的数据更容易处理和分析。
2024-12-04 19:10:42
965
原创 优化SVM分类器:支持向量在训练数据和性能中的作用(示例)
支持向量是机器学习中支持向量机(Support Vector Machine, SVM)算法的核心概念。SVM是一种监督学习算法,用于分类和回归任务。在SVM中,支持向量是指那些位于决策边界或分类超平面上,或者最接近决策边界的样本点。这些向量对于定义模型的决策边界至关重要。关键特性边界定义:在SVM中,决策边界是由支持向量定义的。这些向量是最近距离的样本点,它们决定了模型的分类边界。
2024-11-30 18:42:54
958
原创 如何比较Python中的两个迭代器
Python迭代器是高效遍历元素序列的强大工具。有时,您可能需要比较两个迭代器以确定它们的相等性或找到它们的差异。在本文中,我们将探索比较Python中两个迭代器的不同方法。
2024-11-26 21:56:34
771
原创 如何在Python中进行数学建模?
数学建模是数据科学中使用的强大工具,通过数学方程和算法来表示真实世界的系统和现象。Python拥有丰富的库生态系统,为开发和实现数学模型提供了一个很好的平台。本文将指导您完成Python中的数学建模过程,重点关注数据科学中的应用。
2024-11-23 21:23:23
2702
原创 机器学习 | 使用CatBoost进行情感分析案例
情感分析对于理解文本数据背后的情感基调至关重要,这使得它对于客户反馈分析,社交媒体监控和市场研究等应用程序非常宝贵。在本文中,我们将探讨如何使用CatBoost进行情感分析。
2024-11-19 21:46:51
584
原创 Python缓存:两个简单的方法
缓存是一种用于提高应用程序性能的技术,它通过临时存储程序获得的结果,以便在以后需要时重用它们。在本文中,我们将学习Python中的不同缓存技术,包括functools模块中的@ lru_cache和@ cache装饰器。
2024-11-16 19:27:21
1245
原创 Python中使用pathlib进行文件系统操作
pathlib 是 Python 的一个标准库,它提供了一个面向对象的文件系统路径操作接口。使用 pathlib,你可以以一种更直观和更易于理解的方式处理文件路径,而不必使用字符串操作来分割和连接路径。
2024-11-12 19:39:23
612
原创 使用Python进行健康监测和分析的案例研究
健康监测和分析是指系统地使用健康数据来跟踪和评估个人或人群在一段时间内的健康状况。它包含一系列活动,从实时生理数据收集(如心率,血压和体温)到分析更复杂的健康记录(包括患者病史,生活方式选择和遗传信息)。
2024-11-08 20:56:58
1133
原创 如何使用Pandas创建有效且可复制的代码
Pandas作为一种多功能和强大的工具而屹立不倒。其直观的数据结构和广泛的功能使其成为无数数据专业人士和爱好者的首选。然而,编写既有效又可复制的代码需要的不仅仅是Pandas函数的知识。以下是如何确保Pandas代码既高效又易于复制的方法。在深入编码之前,请了解数据的结构、类型和细微差别。
2024-11-05 19:00:29
411
原创 Python中将文件从一个服务器复制到另一个服务器的4种方法
在 Python 中,将文件从一个服务器复制到另一个服务器通常涉及到网络传输。这个过程可以通过多种方式实现,这里分享4种常用的方法。
2024-10-30 22:58:59
466
原创 数据挖掘中的数据集成
数据挖掘中的数据集成是指将来自多个源的数据组合到单个统一视图中的过程。这可能涉及清理和转换数据,以及解决不同数据源之间可能存在的任何不一致或冲突。数据集成的目标是使数据对分析和决策更有用和更有意义。数据集成中使用的技术包括数据仓库、ETL(提取、转换、加载)过程和数据联合。数据集成是一种数据预处理技术,它将来自多个异构数据源的数据组合到一个一致的数据存储中,并提供数据的统一视图。这些源可能包括多个数据立方体、数据库或平面文件。数据集成方法被正式定义为三元组,其中,G代表全局模式,
2024-10-29 17:05:27
974
原创 机器学习中的谱聚类及实践案例
在我们之前研究的聚类算法中,我们使用数据点之间的紧密性(距离)作为特征来聚类数据点。但是,我们也可以使用数据点之间的连接性作为特征来聚类数据点。使用连通性,我们可以将两个数据点聚类到相同的聚类中,即使两个数据点之间的距离更大。
2024-10-28 19:25:55
1029
1
原创 如何在Python中实现区间调度算法
在算法设计领域,区间排序是一类问题。这些计划考虑到了一些任务。每个任务都由一个时间间隔表示,该时间间隔指示机器完成该任务所需的时间。如果系统或资源上的任何两个时间间隔之间没有重叠,则时间间隔的子集是兼容的。区间调度算法的核心思想是将任务的开始和结束时间分开考虑,通过比较任务的开始时间或结束时间来确定任务的执行顺序。具体来说,可以将任务按照开始时间或结束时间进行排序,然后根据排序结果逐个执行任务,同时记录当前已执行的任务集合,以便在需要时进行调整。
2024-10-24 20:42:30
861
原创 机器学习模型中超参数的调整策略
机器学习模型被定义为具有需要从数据中学习的多个参数的数学模型。通过使用现有数据训练模型,我们可以拟合模型的参数。然而,还有另一种参数,称为超参数,不能直接从常规训练过程中学习。它们通常在实际训练过程开始之前就已确定。这些参数表示模型的重要属性,例如其复杂性或学习率。本文旨在探索调整机器学习模型超参数的各种策略。
2024-10-23 18:42:59
591
原创 使用Matplotlib绘制极轴散点图
总之,学习如何在Python中使用Matplotlib在极轴上绘制散点图,为显示方向或圆形数据模式提供了一种革命性的方法。
2024-10-21 20:10:52
433
原创 使用Python进行用户画像构建的案例分析
用户画像,又称为用户档案或客户画像,是一种通过收集和分析用户的行为、偏好、需求等多维度信息,创建的虚拟用户模型。它是对目标用户群体的一种抽象和概括,旨在帮助企业更好地理解其客户,以便为他们提供更加个性化和精准的产品和服务。本文将详细介绍如何使用Python进行用户画像的构建,并结合实际应用场景,给出每个阶段的任务和系统框架。
2024-10-19 22:10:26
1198
原创 如何在Python中编写自定义上下文管理器?
现在,让我们最后看看如何编写您自己的自定义管理器,以便对资源管理进行细粒度的控制。编写自定义上下文管理器有两种主要方法:基于类的和基于函数的。基于类的方法基于类的方法是编写上下文管理器的最结构化和最灵活的方法。在这里,您定义了一个实现特殊方法__enter__和__exit__的类。Timer类定义了__enter__方法,以在您进入with块时捕获开始时间。它返回self以允许访问块内的对象。__exit__方法计算退出with块时所用的时间并打印出来。基于函数的方法。
2024-10-18 13:35:29
845
原创 机器学习 | 决策树的深度是如何影响预测精度的?
决策树(Decision Tree)是一种非参数的有监督学习方法,能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归的问题。它基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制。决策树模型呈树形结构,在分类问题中,表示基于特征对数据进行分类的过程。每个内部节点表示在属性上的一个测试,每个分支代表一个测试输出,每个叶节点代表一种类别。举个例子,假设一位母亲在给女儿介绍对象时,有这么一段对话:母亲:“给你介绍个对象。女儿:“年纪多大了?
2024-10-15 23:10:03
1262
原创 在Python中将字符串转换为变量名的示例
在这个例子中,我们创建了一个名为VariableContainer的类来封装变量。此类提供了使用变量名添加和检索变量的方法。通过实例化这个类,您可以根据需要动态地添加和访问变量。print(f"输出。
2024-10-15 00:33:40
559
原创 机器学习 | 特征选择如何减少过拟合?
特征选择(Feature Selection)是一种数据预处理技术,旨在从原始的特征集中选择出最有效、最具代表性的特征子集,以便提高学习算法的性能和降低计算开销。特征选择的过程主要包括产生特征子集、评价特征子集、确定停止准则以及验证所选特征子集的有效性。
2024-10-11 19:53:50
1207
原创 使用Python处理大型数据集的一些方法
Python的多功能性、易用性、社区支持和强大的数据处理能力使其成为处理大型数据集的理想选择。在处理大型数据集时,Python 提供了多种方法和技术,以提高效率和可操作性。
2024-10-08 23:21:24
641
原创 Python | 使用Seaborn绘制KDE核密度估计曲线
KDE图,全称核密度估计图(Kernel Density Estimation),是一种用于估计数据分布的非参数方法,通常用于可视化和理解数据的分布情况。它通过平滑地估计数据的概率密度函数(PDF)来显示数据的分布特征,尤其在连续变量上非常有用。核密度估计图通常表现为一条平滑的曲线,描述了数据在特定值附近的密度。这条曲线称为核密度估计。核密度估计是通过将每个数据点视为一个小的概率分布(通常是高斯分布或其他核函数)并将它们叠加而得到的。
2024-10-05 17:05:24
2340
原创 机器学习 | Scikit Learn中基于随机森林的OOB误差计算
随机森林是由多个决策树组成的集成机器学习模型。决策树是一种模型,它通过学习一系列基于数据特征的简单决策规则来进行预测。随机森林将多个决策树的预测组合在一起,以做出更准确、更稳健的预测。随机森林通常用于分类和回归任务。在分类中,目标是预测类别标签(例如,“猫”或“狗”)。在回归中,目标是预测一个连续的目标变量(例如,房屋的价格)。随机森林很受欢迎,因为它们很容易训练,可以处理高维数据,并且非常准确。它们还具有处理缺失值的能力,并且可以处理不平衡的数据集,其中某些类比其他类更普遍。
2024-10-03 13:06:42
1728
原创 如何在Python中计算移动平均值?
在这篇文章中,我们将看到如何在Python中计算移动平均值。移动平均是指总观测值集合中固定大小子集的一系列平均值。它也被称为滚动平均。考虑n个观测值的集合,k是用于确定任何时间t的平均值的窗口的大小。然后,移动平均列表通过最初取当前窗口中存在的前k个观测值的平均值并将其存储在列表中来计算。现在,根据要确定的移动平均值的条件来扩展窗口,并且再次计算窗口中存在的元素的平均值并将其存储在列表中。这个过程一直持续到窗口到达集合的末尾。
2024-09-30 13:54:56
1045
如何实现sqlserver数据库级别数据定时更新到hdfs?
2021-08-04
单台主机存储数据库的数据越来越多,有什么方式可以使用多台主机存储数据并方便管理?
2021-06-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人