在数据空间的世界中,组织处理PB和EB的数据,大数据时代出现了,其存储的本质也在增长。直到2010年,数据存储对行业来说都是一个巨大的挑战和关注。现在,当Hadoop等框架解决了存储问题时,焦点转移到了数据处理上。数据科学在这里扮演着重要的角色。所有你喜欢看的科幻电影都可以通过数据科学变成现实。如今,它的增长已经以多种方式增加,因此人们应该通过学习它是什么以及如何为它增加价值来为我们的未来做好准备。没有任何预感,让我们进入数据科学的世界。在接触到最轻微的想法之后,你可能已经结束了许多问题,比如什么是数据科学?为什么我们需要它?如何成为数据科学家??等等?所以让我们摆脱这个障碍。
数据科学是一个涉及使用统计和计算技术从数据中提取见解和知识的领域。它涵盖了广泛的任务,包括数据清理和准备、数据可视化、统计建模、机器学习等。数据科学家使用这些技术来发现数据中的模式和趋势,进行预测并支持决策。它们可以处理各种数据类型,包括结构化数据(如电子表格中的数字和日期)和非结构化数据(如文本、图像或音频)。数据科学应用于广泛的行业,包括金融、医疗保健、零售等。
数据科学是一个多学科领域,它使用统计和计算方法从数据中提取见解和知识。它涉及来自统计学,计算机科学,数学和领域专业知识等各个领域的技能和知识的组合。
数据科学的过程涉及几个步骤,包括数据收集、清理、探索、分析和解释。这些步骤通常是迭代的,并且可以基于所获得的结果来改进该过程。
数据科学的主要目标之一是从数据中提取可用于为决策提供信息的见解。这可能涉及识别数据中的模式或趋势,对未来结果进行预测,或识别优化或改进的机会。
数据科学用于广泛的应用,包括商业,医疗保健,社会科学