在数据空间的世界中,组织处理PB和EB的数据,大数据时代出现了,其存储的本质也在增长。直到2010年,数据存储对行业来说都是一个巨大的挑战和关注。现在,当Hadoop等框架解决了存储问题时,焦点转移到了数据处理上。数据科学在这里扮演着重要的角色。所有你喜欢看的科幻电影都可以通过数据科学变成现实。如今,它的增长已经以多种方式增加,因此人们应该通过学习它是什么以及如何为它增加价值来为我们的未来做好准备。没有任何预感,让我们进入数据科学的世界。在接触到最轻微的想法之后,你可能已经结束了许多问题,比如什么是数据科学?为什么我们需要它?如何成为数据科学家??等等?所以让我们摆脱这个障碍。
数据科学是一个涉及使用统计和计算技术从数据中提取见解和知识的领域。它涵盖了广泛的任务,包括数据清理和准备、数据可视化、统计建模、机器学习等。数据科学家使用这些技术来发现数据中的模式和趋势,进行预测并支持决策。它们可以处理各种数据类型,包括结构化数据(如电子表格中的数字和日期)和非结构化数据(如文本、图像或音频)。数据科学应用于广泛的行业,包括金融、医疗保健、零售等。
数据科学是一个多学科领域,它使用统计和计算方法从数据中提取见解和知识。它涉及来自统计学,计算机科学,数学和领域专业知识等各个领域的技能和知识的组合。
数据科学的过程涉及几个步骤,包括数据收集、清理、探索、分析和解释。这些步骤通常是迭代的,并且可以基于所获得的结果来改进该过程。
数据科学的主要目标之一是从数据中提取可用于为决策提供信息的见解。这可能涉及识别数据中的模式或趋势,对未来结果进行预测,或识别优化或改进的机会。
数据科学用于广泛的应用,包括商业,医疗保健,社会科学,工程等。数据科学应用的一些示例包括欺诈检测、个性化营销、医疗诊断、预测性维护和推荐系统。
近年来,在大数据增长和强大计算资源可用性的推动下,数据科学变得越来越重要。因此,数据科学已成为一个需求旺盛的领域,对具有数据科学技能和专业知识的专业人员的需求不断增长。
什么是数据科学?
数据科学与各种工具、算法和机器学习原理相结合。最简单地说,它涉及通过分析,编程和业务技能的过程从结构化或非结构化数据中获得有意义的信息或见解。它是一个包含许多元素的领域,如数学,统计学,计算机科学等。那些擅长这些领域并对你愿意工作的领域有足够了解的人可以称自己为数据科学家。这不是一件容易的事,但也不是不可能的。您需要从数据开始,它是模型的可视化、编程、公式化、开发和部署。在未来,数据科学家的工作将会有很大的炒作。记住这一点,准备好适应这个世界。
数据科学是一个涉及使用统计和计算技术从数据中提取见解和知识的领域。它是一个多学科领域,包括计算机科学,统计学和特定领域的专业知识。数据科学家使用各种工具和方法,如机器学习、统计建模和数据可视化,来分析数据并进行预测。他们使用结构化和非结构化数据,并使用所获得的见解为决策提供信息并支持业务运营。数据科学应用于广泛的行业,包括金融,医疗保健,零售等。它帮助组织做出数据驱动的决策并获得竞争优势。
数据科学是如何工作的?
数据科学不是一个一步到位的过程,你可以在很短的时间内学会它,并称自己为数据科学家。它的通行证从许多阶段和每一个元素是重要的。一个人应该总是按照正确的步骤到达梯子。每一步都有它的价值,它在你的模型中很重要。下面,让我们来准备学习这些步骤。
- 问题陈述:没有动力就没有工作,数据科学也不例外。非常清楚和精确地声明或制定你的问题陈述是非常重要的。你的整个模型和它的工作取决于你的陈述。许多科学家认为这是日期科学的主要和非常重要的步骤。因此,请确定您的问题陈述是什么,以及它能为业务或任何其他组织增加多少价值。
- 数据收集:在定义了问题陈述之后,下一个明显的步骤是搜索模型可能需要的数据。你必须做好调查,找到你需要的一切。数据可以是任何形式,即非结构化或结构化。它可以是各种形式,如视频,电子表格,编码形式等。你必须收集所有这些类型的来源。
- 数据清理:既然你已经制定了你的动机,也收集了你的数据,下一步就是清理。是的,它是!数据清理是数据科学家最喜欢做的事情。数据清理是从您的集合中删除丢失,冗余,不必要和重复的数据。在R或Python编程的帮助下,有各种工具可以做到这一点。你自己选吧。各种各样的科学家对选择哪一个有他们的意见。当涉及到统计部分时,R比Python更受欢迎,因为它拥有超过12,000个包的特权。虽然使用python是因为它速度快,易于访问,我们可以在各种包的帮助下执行与R相同的事情。
- 数据分析与探索:这是数据科学中要做的主要事情之一,也是时候让内心的福尔摩斯出来了。它是关于分析数据的结构,发现其中隐藏的模式,研究行为,可视化一个变量对其他变量的影响,然后得出结论。我们可以在使用任何编程语言的库的帮助下形成的各种图形的帮助下探索数据。在R语言中,GGplot是最著名的模型之一,而Python中的Matplotlib是最著名的模型之一。
- 数据建模:一旦你完成了你从数据可视化中形成的研究,你必须开始构建一个假设模型,这样它才能在未来给你一个很好的预测。在这里,您必须选择一个最适合您的模型的好算法。从回归到分类、SVM(支持向量机)、聚类等都有不同的算法。您的模型可以是机器学习算法。使用训练数据训练模型,然后使用测试数据对其进行测试。有各种方法可以做到这一点。其中之一是K折方法,将整个数据分为两部分,一部分是训练数据,另一部分是测试数据。在这些基础上,你训练你的模型。
- 优化和部署:你遵循了每一步,因此建立了一个你认为最适合的模型。但是,如何确定模型的性能如何?这就是优化的由来。您可以测试数据,并通过检查其准确性来了解其执行情况。简而言之,您检查数据模型的效率,从而尝试优化它以获得更准确的预测。部署处理您的模型的启动,并让外面的人从中受益。您还可以从组织和人员那里获得反馈,以了解他们的需求,然后在您的模型上进行更多的工作。
给数据科学专业新生的建议
- 好奇心:如果你没有好奇心,你就不知道如何处理这些数据。
- 判断:这是因为如果你对事物没有先入为主的观念,你就不知道从哪里开始。
- 有争议的:这是因为如果你能论证,如果你能为一个案子辩护,至少你可以从某个地方开始,然后你可以从数据中学习,然后可以修改你的假设。
- 首先要对编程、统计学和线性代数的基础知识有一个扎实的了解。
- 学习工具,如Python,R和SQL。熟悉最流行的库和框架,如numpy,pandas和scikit-learn。
- 练习,练习,练习。参加在线编码挑战,以提高您的技能并获得经验。
- 学习机器学习的基础知识,熟悉最流行的算法。
- 阅读研究论文,了解该领域的最新发展。
- 学习如何有效地传达你的发现。能够以清晰和令人信服的方式展示您的工作与您拥有的技术技能同样重要。
- 建立一个展示你的技能和经验的项目组合。
- 与该领域的其他数据科学家和专业人士建立联系。参加聚会和会议。
- 保持好奇心,不要害怕问问题。
- 最后,如果你在前进的道路上遇到挑战或障碍,不要气馁。学习成为一名数据科学家是一段旅程,需要时间,努力和奉献才能取得成功。
数据科学的优势
- 改善决策:数据科学可以通过提供基于数据分析的见解和预测来帮助组织做出更好的决策。
- 成本效益:借助正确的工具和技术,数据科学可以通过识别效率低下的领域和优化流程来帮助组织降低成本。
- 创新:数据科学可用于识别新的创新机会,并开发新的产品和服务。
- 竞争优势:有效使用数据科学的组织可以通过做出更好的决策、提高效率和识别新机会来获得竞争优势。
- 个性化:数据科学可以帮助组织个性化他们的产品或服务,以更好地满足个人客户的需求。
数据科学的缺陷
- 数据质量:数据科学中使用的数据的准确性和质量可能对所获得的结果产生重大影响。
- 隐私问题:数据的收集和使用可能会引起隐私问题,特别是如果数据是个人或敏感的。
- 复杂性:数据科学可能是一个复杂的技术领域,需要专业技能和专业知识。
- 偏差:如果用于训练它们的数据有偏差,数据科学算法可能会有偏差,这可能会导致不准确的结果。
- 解释:解释数据科学结果可能具有挑战性,特别是对于可能不理解所使用的基本假设和方法的非技术利益相关者。