使用Python进行健身手表数据分析

本文介绍了如何使用Python对健身手表数据进行分析,包括数据收集、探索性数据分析(EDA)、可视化用户活动和健康指标,以支持健康管理与个性化解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

健身手表(Fitness Watch)数据分析涉及分析健身可穿戴设备或智能手表收集的数据,以深入了解用户的健康和活动模式。这些设备可以跟踪所走的步数、消耗的能量、步行速度等指标。本文将带您完成使用Python进行Fitness Watch数据分析的任务。

Fitness Watch数据分析是健康和保健领域企业的重要工具。通过分析健身可穿戴设备的用户数据,公司可以了解用户行为,提供个性化的解决方案,并有助于改善用户的整体健康和福祉。

下面是我们在处理健身手表数据分析问题时可以遵循的过程:

  1. 从健身手表收集数据,确保数据准确可靠。
  2. 执行EDA以获得对数据的初步了解。
  3. 从原始数据中创建可能提供更有意义的见解的新功能。
  4. 创建数据的可视化表示,以有效地传达见解。
  5. 根据时间间隔或健身指标水平对用户的活动进行分段,并分析其表现。

因此,该过程始于从健身手表收集数据。每款健身手表都可与智能手机上的应用程序配合使用。您可以从智能手机上的该应用程序收集数据。例如,这里用的是从苹果的健康应用程序收集了的一个健身手表的数据。

使用Python进行分析

现在,让我们通过导入必要的Python库和数据集来开始Fitness Watch数据分析的任务:

import pandas as pd
import plotly.io as pio
import plotly.graph_objects as go
pio.templates.default = "plotly_white"
import plotly.express as px

data = pd.read_csv("Apple-Fitness-Data.csv")
print(data.head())

输出

         Date       Time  Step Count  Distance  Energy Burned  \
0  2023-03-21  16:01:23           46   0.02543         14.620   
1  2023-03-21  16:18:37          645   0.40041         14.722   
2  2023-03-21  16:31:38           14   0.00996         14.603   
3  2023-03-21  16:45:37           13   0.00901         14.811   
4  2023-03-21  17:10:30           17   0.00904         15.153   

   Flights Climbed  Walking Double Support Percentage  Walking Speed  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值