健身手表(Fitness Watch)数据分析涉及分析健身可穿戴设备或智能手表收集的数据,以深入了解用户的健康和活动模式。这些设备可以跟踪所走的步数、消耗的能量、步行速度等指标。本文将带您完成使用Python进行Fitness Watch数据分析的任务。
Fitness Watch数据分析是健康和保健领域企业的重要工具。通过分析健身可穿戴设备的用户数据,公司可以了解用户行为,提供个性化的解决方案,并有助于改善用户的整体健康和福祉。
下面是我们在处理健身手表数据分析问题时可以遵循的过程:
- 从健身手表收集数据,确保数据准确可靠。
- 执行EDA以获得对数据的初步了解。
- 从原始数据中创建可能提供更有意义的见解的新功能。
- 创建数据的可视化表示,以有效地传达见解。
- 根据时间间隔或健身指标水平对用户的活动进行分段,并分析其表现。
因此,该过程始于从健身手表收集数据。每款健身手表都可与智能手机上的应用程序配合使用。您可以从智能手机上的该应用程序收集数据。例如,这里用的是从苹果的健康应用程序收集了的一个健身手表的数据。
使用Python进行分析
现在,让我们通过导入必要的Python库和数据集来开始Fitness Watch数据分析的任务:
import pandas as pd
import plotly.io as pio
import plotly.graph_objects as go
pio.templates.default = "plotly_white"
import plotly.express as px
data = pd.read_csv("Apple-Fitness-Data.csv")
print(data.head())
输出
Date Time Step Count Distance Energy Burned \
0 2023-03-21 16:01:23 46 0.02543 14.620
1 2023-03-21 16:18:37 645 0.40041 14.722
2 2023-03-21 16:31:38 14 0.00996 14.603
3 2023-03-21 16:45:37 13 0.00901 14.811
4 2023-03-21 17:10:30 17 0.00904 15.153
Flights Climbed Walking Double Support Percentage Walking Speed