分类数据是一种可以划分为不同类别或组的数据类型。例如,数据集可能有一列的类别为“红色”、“绿色”和“蓝色”。处理分类数据可能具有挑战性,因为它不能以与数字数据相同的方式处理。
可视化和分析分类数据的一种方法是使用Bokeh,这是一个强大的Python库,用于创建交互式可视化。在本文中,我们将探讨如何使用Bokeh处理分类数据,并提供一些示例来说明这些概念。
概念
在深入研究使用Bokeh处理分类数据的细节之前,重要的是要了解一些相关概念。
- 分类数据:如上所述,分类数据是一种可以划分为不同类别或组的数据类型。它可以是名义的(没有固有的顺序)或顺序的(有固有的顺序)。
- 分类轴:在Bokeh中,分类轴用于表示图上的分类数据。类别沿轴绘制,每个类别由刻度线表示。
- 分类颜色映射:分类颜色映射是一种将不同颜色分配给图上不同类别的方法。这对于在视觉上区分不同类别很有用。
现在我们对概念有了基本的理解,让我们来看看使用Bokeh处理分类数据的步骤。
具体步骤
1.导入必要的库(Bokeh 和您可能需要的任何其他库)
2.使用分类数据创建数据集
3.创建一个图形对象,并将x_range或y_range设置为要绘制的类别
4.使用vbar()或hbar()方法绘制数据,将类别指定为x或y坐标,将值指定为顶部或右侧坐标
5.可选:通过设置宽度、添加网格线和设置范围起始值来自定义图的外观
6.使用show()函数显示绘图
现在我们已经完成了使用Bokeh 处理分类数据的步骤,让我们看一些例子来进一步说明这些概念。
示例1 - 简单条形图
#Import the necessary libraries
from bokeh.io import output_file, show
from bokeh.plotting import figure
from sklearn.datasets import load_breast_cancer
# Load the datasets
data = load_breast_cancer(as_frame=True)
# file to save the model
output_file("Breast Cancer.html")
# color of the wedges
color = ["orange","green"]
p = figure(x_range=data.target_names, height=350, title="breast cancer",toolbar_location=