矩阵论
文章平均质量分 67
Learner-007
研究生一枚,好好学习,天天向上
展开
-
矩阵论笔记2
9.17随堂笔记1.齐次线性方程组的结构常数项全为0的n元线性方程组称为n元齐次线性方程组。设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯矩阵的非零行行数为r,则它的方程组的解只有以下两种类型: 当r=n时,原方程组仅有零解; 当r<n时,有无穷多个解(从而有非零解)。 2.非齐次线性方程组解的结构非齐次线性方程组有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=ra...原创 2021-09-17 15:35:50 · 2113 阅读 · 0 评论 -
矩阵论笔记1
9.16随堂笔记复习1.矩阵的秩矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rankA。2.矩阵的秩性质3.矩阵等价(相似、合同、相等)4.伴随矩阵,逆矩阵及逆矩阵的存在条件(略)5.线性相关,线性无关线性空间设V是一个非空集合,P是一个域。若:1.在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。2....原创 2021-09-17 14:53:12 · 718 阅读 · 0 评论