onnx进行yolov8detect的ImportError: DLL load failed while importing onnxruntime_pybind11_state:动态链接库调用失败

这里写自定义目录标题

解决办法,估计是原来版本太高

原来是onnxtuntime1.19.0
应该是不兼容,安装pip install onnxtuntime-gpu1.14.1
安装1.14.1是因为labelme需要大于等于1.14.1的onnxtuntime
遇到问题的小伙伴可以根据自己的需要降低onnxruntime的版本

### ONNXRuntime `NoSuchFile` 错误解决方案 当遇到 `onnxruntime NoSuchFile` 错误时,通常是因为模型文件路径配置不正确或者目标文件确实不存在。以下是针对该问题的具体分析和解决方法: #### 1. **确认模型文件是否存在** 首先需要验证 `common_old.onnx` 文件是否存在于指定的路径下。如果文件缺失,则需重新下载或生成对应的模型文件并放置到正确的目录中。 #### 2. **检查模型加载路径** 如果模型文件存在但仍报错,可能是由于程序中的路径设置有误。可以通过打印日志来调试实际加载路径是否匹配预期位置。例如,在 Python 中可以使用如下代码片段进行测试: ```python import os model_path = "./path/to/common_old.onnx" if not os.path.exists(model_path): raise FileNotFoundError(f"The model file {model_path} does not exist.") print(f"Model path is valid: {model_path}") ``` 上述代码会帮助定位路径问题[^3]。 #### 3. **处理 CMake 配置冲突** 若项目依赖于自定义构建工具链(如通过 CMake 构建),可能因某些宏名冲突引发编译器警告甚至错误。根据已有经验,修改 `onnxruntime_common.cmake` 和 `onnxruntime_unittests.cmake` 文件中涉及的参数名称可有效缓解此类问题。具体操作为将 `"date_interface"` 替换为 `"date"`[^1]。 #### 4. **排查 FastDFS 安装相关联影响** 考虑到引用材料提到过类似的头文件找不到的情况 (致命错误:`common_define.h`) ,这表明可能存在环境变量未正确配置的问题。建议确保所有必要的库及其头文件均已成功安装至标准搜索路径 `/usr/local/include/` 下,并且动态链接库已加入系统共享库缓存 (`ldconfig`) 。对于 Nginx 插件开发场景下的类似问题,可通过以下命令手动调整 include 搜索范围: ```bash export CPPFLAGS="-I/usr/local/include/" export LDFLAGS="-L/usr/local/lib/" ``` 以上措施有助于避免因路径遗漏而导致的编译失败[^2]。 #### 总结 综合来看,`onnxruntime NoSuchFile` 的根本原因多源于资源不可达或者是构建过程中产生的副作用干扰所致。按照前述指导逐一核查应该能够顺利解决问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值