迭代器和生成器

可迭代对象 iterable

1. 满足以下条件的对象可以成为可迭代对象

  • 对象实现了__iter__方法
  • __iter__对象成为可迭代对象

2. 可迭代对象特点:

  • 可以通过for .. in ..这类语句遍历读取数据。
  • 【for循环工作原理:在内部对可迭代对象调用__iter__方法,获取到迭代器对象后,再一次次的通过迭代器对象调用__next__方法获取迭代结果】

3. 判断对象是否可迭代:

  • isinstance(对象, Iterable) Iterable:可迭代对象
  • 可迭代对象:字符串、列表、元组、字典、集合
from collections.abc import Iterable
print(isinstance(123, Iterable))  # False代表不是可迭代对象
print(isinstance('python', Iterable))  # True代表是可迭代对象
print(isinstance({'name':'zs'}, Iterable)) # True代表是可迭代对象

迭代器 iterator

迭代器有两个函数:iter()和next()
通过iter()函数取得可迭代对象的迭代器,对获取到的迭代器对象不断的使用next()函数获取下一条数据,取完元素后,再使用next()引发StopIteration异常
# 举例1
li = ['迷糊', '海绵宝宝', '小白']  # 列表是可迭代对象
# 创建迭代器对象
name_li = iter(li) 

print(next(name_li)) 
print(next(name_li))
print(next(name_li))
print(next(name_li)) # StopIteration

举例二: 自定义迭代器类
class Test2:
    def __iter__(self):  # 该方法返回的是迭代器对象
        self.n = 1
        return self   # 返回self, 表示实例对象本身是自己的迭代器对象

    def __next__(self):
        self.n += 1
        return self.n

te2 = Test2()
print(te2)  # te2跟my的地址是一样的
# print(next(te2))  # AttributeError: 'Test2' object has no attribute 'n'
# te2使用next方法报错是因为,没有调用iter方法,里面的self.n实例属性没有生成

my = iter(te2)  # 会去调用__iter__方法
print(next(my))     # 2
print(next(my))     # 3
print(next(my))     # 4

# 使用for循环同等效果,for循环会自动调用iter方法,再调用next方法
for i in te2:
    if i <=10:
        print(i)
    else:
        break


# 举例三:
class Test3:
    def __init__(self):
        self.n = 1

    def __iter__(self):
        return self  # 返回的是当前迭代器类的实例对象

    def __next__(self):
        self.n += 1
        if self.n == 10:
            raise StopIteration('终止了, 不能继续运行')
        return self.n

te3 = Test3() 
try:
    while True:
        print(te3.__next__())

except StopIteration as e:
    print("what",e)

生成器

1.生成器就是一个迭代器。定义方式类似于列表推导式,把列表推导式的[]改成()就行
2.生成器函数:python中, 使用了yield的函数被称为生成器(generator)
  普通函数,返回值用return; 生成器函数使用yield语句
  yield语句一次返回一个结果,在每个结果中间,挂起函数,以便下次从它离开的地方继续执行
  yield效果使函数中断,并保存中断的状态
 列表推导式
# li = [i*10 for i in range(3)]
# print(li)
# 把列表推导式的[]改成()
li2 = (i*10 for i in range(3))  # 生成器表达式
print(li2)    #<generator object <genexpr> at 0x000002105DD1B548>

print(next(li2))
print(next(li2))
print(next(li2))
# print(next(li2))  # StopIteration

def funa(val):
    li = []
    li.append(val)
    print('这是列表:', li)

funa('a')  # 这是列表: ['a']
funa('b')  # 这是列表: ['b']
funa('c')  # 这是列表: ['c']

# 生成器函数
def funb():
    print('---开始了----')
    yield 2   # 返回一个2,并暂停函数
    yield 3
    yield 4

fb = funb()  # 调用生成器函数,返回的是一个生成器对象
print(fb)  # <generator object funb at 0x0000018DC71CE740>
print(next(fb))  # 2
print(next(fb))  # 3
print(next(fb))  # 4
print(next(fb))  # StopIteration

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值