数据分析之Series基本操作

本文介绍了Python数据分析中Series的基本操作,包括通过列表或字典创建Series,详细讲解了Series的索引和切片,包括显式和隐式索引的区别,以及如何进行切片。此外,还提到了缺失值的处理和Series之间的运算,如加减乘除及对齐机制。
摘要由CSDN通过智能技术生成

###导入包

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

###Series是一种类似与一维数组的对象,由下面两个部分组成:

  • values:一组数据(ndarray类型)
  • index:相关的数据索引标签
  • 由列表或numpy数组创建
  • 默认索引为0到N-1的整数型索引
s=Series(data=[1,2,5,4,7])
s
0    1
1    2
2    5
3    4
4    7
dtype: int64
s1=Series(data=np.random.randint(1,100,5))
s1
0     7
1    50
2    24
3    81
4    49
dtype: int32

指定行索引

s=Series(data=[1,2,5,4,7],index=['A','B','C','D','E'])
s
A    1
B    2
C    5
D    4
E    7
dtype: int64

###使用字典创建

dict={
    '语文':88,
    '数学':99,
    '英语':100
}
s2=Series(data=dict)
s2
数学     99
英语    100
语文     88
dtype: int64

###Series的索引和切片
可以使用中括号取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值