Spark知识

目录

1.Spark 的运行流程?

2. Spark 有哪些组件?

3. Spark 中的 RDD 机制理解吗?

4. RDD 中 reduceBykey 与 groupByKey 哪个性能好,为什么?

5. 介绍一下 cogroup rdd 实现原理,你在什么场景下用过这个 rdd?

6.如何区分 RDD 的宽窄依赖?

7.为什么要设计宽窄依赖?

8.DAG 是什么?

9.DAG 中为什么要划分 Stage?

10. 如何划分 DAG 的 stage?

11.DAG 划分为 Stage 的算法了解吗?

12. 对于 Spark 中的数据倾斜问题你有什么好的方案?

13.Spark 中的 OOM 问题?

14.Spark 中数据的位置是被谁管理的?

15.Spaek 程序执行,有时候默认为什么会产生很多 task,怎么修改默认 task 执行个数?

16.  Spark 与 MapReduce 的 Shuffle 的区别?

17.介绍一下 join 操作优化经验?

18.spark容错机制

19.spark广播变量 

 20.源码


1.Spark 的运行流程?

1.SparkContext初始化上下文

2.SparkContext 向资源管理器注册并向资源管理器申请运行 Executor

3.启动计算进程服务,并且告知这些进程服务于哪个job

4.ExecutorExecutor 反向注册给Context、Dirver

5.SparkContext 构建 DAG 有向无环图

6.将 DAG 分解成 Stage(TaskSet)

7.把 Stage 发送给 TaskScheduler

8.Executor 向 SparkContext 申请 Task

9.TaskScheduler 将 Task 发送给 Executor

10.Task 在 Executor 上运行,运行完毕释放所有资源

百度安全验证

2. Spark 有哪些组件?

master:管理集群和节点,不参与计算。

worker:计算节点,进程本身不参与计算,和 master 汇报。

Driver:运行程序的 main 方法,创建 spark context 对象。

spark context:控制整个 application 的生命周期,包括 dagsheduler 和 task scheduler 等组件。

client:用户提交程序的入口。

3. Spark 中的 RDD 机制理解吗?

rdd 分布式弹性数据集,简单的理解成一种数据结构,是 spark 框架上的通用货币。所有算子都是基于 rdd 来执行的,不同的场景会有不同的 rdd 实现类,但是都可以进行互相转换。rdd 执行过程中会形成 dag 图,然后形成 lineage 保证容错性等。从物理的角度来看 rdd 存储的是 block 和 node 之间的映射。

RDD 是 spark 提供的核心抽象,全称为弹性分布式数据集。

RDD 在逻辑上是一个 hdfs 文件,在抽象上是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同结点上,从而让 RDD 中的数据可以被并行操作(分布式数据集)

比如有个 RDD 有 90W 数据,3 个 partition,则每个分区上有 30W 数据。RDD 通常通过 Hadoop 上的文件,即 HDFS 或者 HIVE 表来创建,还可以通过应用程序中的集合来创建;RDD 最重要的特性就是容错性,可以自动从节点失败中恢复过来。即如果某个结点上的 RDD partition 因为节点故障,导致数据丢失,那么 RDD 可以通过自己的数据来源重新计算该 partition。这一切对使用者都是透明的。

RDD 的数据默认存放在内存中,但是当内存资源不足时,spark 会自动将 RDD 数据写入磁盘。比如某结点内存只能处理 20W 数据,那么这 20W 数据就会放入内存中计算,剩下 10W 放到磁盘中。RDD 的弹性体现在于 RDD 上自动进行内存和磁盘之间权衡和切换的机制。

4. RDD 中 reduceBykey 与 groupByKey 哪个性能好,为什么?

reduceByKey:reduceByKey 会在结果发送至 reducer 之前会对每个 mapper 在本地进行 merge,有点类似于在 MapReduce 中的 combiner。这样做的好处在于,在 map 端进行一次 reduce 之后,数据量会大幅度减小,从而减小传输,保证 reduce 端能够更快的进行结果计算。

groupByKey:groupByKey 会对每一个 RDD 中的 value 值进行聚合形成一个序列(Iterator),此操作发生在 reduce 端,所以势必会将所有的数据通过网络进行传输,造成不必要的浪费。同时如果数据量十分大,可能还会造成 OutOfMemoryError。

所以在进行大量数据的 reduce 操作时候建议使用 reduceByKey。不仅可以提高速度,还可以防止使用 groupByKey 造成的内存溢出问题。

5. 介绍一下 cogroup rdd 实现原理,你在什么场景下用过这个 rdd?

cogroup:对多个(2~4)RDD 中的 KV 元素,每个 RDD 中相同 key 中的元素分别聚合成一个集合。

与 reduceByKey 不同的是:reduceByKey 针对一个 RDD中相同的 key 进行合并。而 cogroup 针对多个 RDD中相同的 key 的元素进行合并。

cogroup 的函数实现:这个实现根据要进行合并的两个 RDD 操作,生成一个 CoGroupedRDD 的实例,这个 RDD 的返回结果是把相同的 key 中两个 RDD 分别进行合并操作,最后返回的 RDD 的 value 是一个 Pair 的实例,这个实例包含两个 Iterable 的值,第一个值表示的是 RDD1 中相同 KEY 的值,第二个值表示的是 RDD2 中相同 key 的值。

由于做 cogroup 的操作,需要通过 partitioner 进行重新分区的操作,因此,执行这个流程时,需要执行一次 shuffle 的操作(如果要进行合并的两个 RDD 的都已经是 shuffle 后的 rdd,同时他们对应的 partitioner 相同时,就不需要执行 shuffle)。

场景:表关联查询或者处理重复的 key。

6.如何区分 RDD 的宽窄依赖?

窄依赖:父 RDD 的一个分区只会被子 RDD 的一个分区依赖;

宽依赖:父 RDD 的一个分区会被子 RDD 的多个分区依赖(涉及到 shuffle)。

7.为什么要设计宽窄依赖?

对于窄依赖:窄依赖的多个分区可以并行计算;窄依赖的一个分区的数据如果丢失只需要重新计算对应的分区的数据就可以了。

对于宽依赖:划分 Stage(阶段)的依据:对于宽依赖,必须等到上一阶段计算完成才能计算下一阶段。

8.DAG 是什么?

DAG(Directed Acyclic Graph 有向无环图)指的是数据转换执行的过程,有方向,无闭环(其实就是 RDD 执行的流程);原始的 RDD 通过一系列的转换操作就形成了 DAG 有向无环图,任务执行时,可以按照 DAG 的描述,执行真正的计算(数据被操作的一个过程)。

9.DAG 中为什么要划分 Stage?

并行计算。

一个复杂的业务逻辑如果有 shuffle,那么就意味着前面阶段产生结果后,才能执行下一个阶段,即下一个阶段的计算要依赖上一个阶段的数据。那么我们按照 shuffle 进行划分(也就是按照宽依赖就行划分),就可以将一个 DAG 划分成多个 Stage/阶段,在同一个 Stage 中,会有多个算子操作,可以形成一个 pipeline 流水线,流水线内的多个平行的分区可以并行执行。

10. 如何划分 DAG 的 stage?

对于窄依赖,partition 的转换处理在 stage 中完成计算,不划分(将窄依赖尽量放在在同一个 stage 中,可以实现流水线计算)。

对于宽依赖,由于有 shuffle 的存在,只能在父 RDD 处理完成后,才能开始接下来的计算,也就是说需要要划分 stage。

11.DAG 划分为 Stage 的算法了解吗?

核心算法:回溯算法

从后往前回溯/反向解析,遇到窄依赖加入本 Stage,遇见宽依赖进行 Stage 切分。

Spark 内核会从触发 Action 操作的那个 RDD 开始从后往前推,首先会为最后一个 RDD 创建一个 Stage,然后继续倒推,如果发现对某个 RDD 是宽依赖,那么就会将宽依赖的那个 RDD 创建一个新的 Stage,那个 RDD 就是新的 Stage 的最后一个 RDD。然后依次类推,继续倒推,根据窄依赖或者宽依赖进行 Stage 的划分,直到所有的 RDD 全部遍历完成为止。

12. 对于 Spark 中的数据倾斜问题你有什么好的方案?

Spark内存模型详解 - _XiongH - 博客园

前提是定位数据倾斜,是 OOM 了,还是任务执行缓慢,看日志,看 WebUI

解决方法,有多个方面:

避免不必要的 shuffle,如使用广播小表的方式,将 reduce-side-join 提升为 map-side-join

分拆发生数据倾斜的记录,分成几个部分进行,然后合并 join 后的结果

改变并行度,可能并行度太少了,导致个别 task 数据压力大

两阶段聚合,先局部聚合,再全局聚合

自定义 paritioner,分散 key 的分布,使其更加均匀

13.Spark 中的 OOM 问题?

Spark面对OOM问题的解决方法及优化总结 (转载) - 何建新 - 博客园

(1)map 类型的算子执行中内存溢出如 flatMap,mapPatitions

原因:map 端过程产生大量对象导致内存溢出:这种溢出的原因是在单个 map 中产生了大量的对象导致的。

解决方案:

增加堆内存。

在不增加内存的情况下,可以减少每个 Task 处理数据量,使每个 Task 产生大量的对象时,Executor 的内存也能够装得下。具体做法可以在会产生大量对象的 map 操作之前调用 repartition 方法,分区成更小的块传入 map。

(2)shuffle 后内存溢出如 join,reduceByKey,repartition。

shuffle 内存溢出的情况可以说都是 shuffle 后,单个文件过大导致的。在 shuffle 的使用,需要传入一个 partitioner,大部分 Spark 中的 shuffle 操作,默认的 partitioner 都是 HashPatitioner,默认值是父 RDD 中最大的分区数.这个参数 spark.default.parallelism 只对 HashPartitioner 有效.如果是别的 partitioner 导致的 shuffle 内存溢出就需要重写 partitioner 代码了.

(3)driver 内存溢出用户在 Dirver 端口生成大对象,比如创建了一个大的集合数据结构。

解决方案:将大对象转换成 Executor 端加载,比如调用 sc.textfile 或者评估大对象占用的内存,增加 dirver 端的内存从 Executor 端收集数据(collect)回 Dirver 端,建议将 driver 端对 collect 回来的数据所作的操作,转换成 executor 端 rdd 操作。

14.Spark 中数据的位置是被谁管理的?

图解Spark系列:BlockManager原理与执行流程_日常笔记的技术博客_51CTO博客

每个数据分片都对应具体物理位置,数据的位置是被blockManager管理,无论数据是在磁盘,内存还是 tacyan,都是由 blockManager 管理。

15.Spaek 程序执行,有时候默认为什么会产生很多 task,怎么修改默认 task 执行个数?

(1)输入数据有很多 task,尤其是有很多小文件的时候,有多少个输入block 就会有多少个 task 启动;

(2)spark 中有 partition 的概念,每个 partition 都会对应一个 task,task 越多,在处理大规模数据的时候,就会越有效率。不过 task 并不是越多越好,如果平时测试,或者数据量没有那么大,则没有必要 task 数量太多。

(3)参数可以通过 spark_home/conf/spark-default.conf 配置文件设置:针对 spark sql 的 task 数量:spark.sql.shuffle.partitions=50

非 spark sql 程序设置生效:spark.default.parallelism=10(1)

16.  Spark 与 MapReduce 的 Shuffle 的区别?

相同点:都是将 mapper(Spark 里是 ShuffleMapTask)的输出进行 partition,不同的 partition 送到不同的 reducer(Spark 里 reducer 可能是下一个 stage 里的 ShuffleMapTask,也可能是 ResultTask)

不同点:

MapReduce 默认是排序的,spark 默认不排序,除非使用 sortByKey 算子。MapReduce 可以划分成 split,map()、spill、merge、shuffle、sort、reduce()等阶段,spark 没有明显的阶段划分,只有不同的 stage 和算子操作。

MR 落盘,Spark 不落盘,spark 可以解决 mr 落盘导致效率低下的问题。 

17.介绍一下 join 操作优化经验?

join 其实常见的就分为两类:map-side join和 reduce-side join。

当大表和小表 join 时,用 map-side join 能显著提高效率。

将多份数据进行关联是数据处理过程中非常普遍的用法,不过在分布式计算系统中,这个问题往往会变的非常麻烦,因为框架提供的 join 操作一般会将所有数据根据 key 发送到所有的 reduce 分区中去,也就是 shuffle 的过程。造成大量的网络以及磁盘 IO 消耗,运行效率极其低下,这个过程一般被称为 reduce-side-join。

如果其中有张表较小的话,我们则可以自己实现在 map 端实现数据关联,跳过大量数据进行 shuffle 的过程,运行时间得到大量缩短,根据不同数据可能会有几倍到数十倍的性能提升。

在大数据量的情况下,join 是一中非常昂贵的操作,需要在 join 之前应尽可能的先缩小数据量。

对于缩小数据量,有以下几条建议:

若两个 RDD 都有重复的 key,join 操作会使得数据量会急剧的扩大。所以,最好先使用 distinct 或者 combineByKey 操作来减少 key 空间或者用 cogroup 来处理重复的 key,而不是产生所有的交叉结果。

在 combine 时,进行机智的分区,可以避免第二次 shuffle。如果只在一个 RDD 出现,那你将在无意中丢失你的数据。所以使用外连接会更加安全,这样你就能确保左边的 RDD 或者右边的 RDD 的数据完整性,在 join 之后再过滤数据。

如果我们容易得到 RDD 的可以的有用的子集合,那么我们可以先用 filter 或者 reduce,如何在再用 join。

18.spark容错机制

  • spark容错机制:首先会查看RDD是否被Cache,如果被Cache到内存或磁盘,直接获取,否则查看Checkpoint所指定的HDFS中是否缓存数据,如果都没有则直接从父RDD开始重新计算还原

  • 为了保证RDD中数据的健壮性,RDD数据集通过所谓的血统关系(Lineage)记住了它是如何从其它RDD中转换过来的。Spark将RDD之间的关系归类为宽依赖窄依赖。Spark会根据Lineage存储的RDD的依赖关系对RDD计算做故障容错。目前Saprk的容错策略根据RDD依赖关系重新计算-无需干预RDD做Cache-临时缓存RDD做Checkpoint-持久化手段完成RDD计算的故障容错。

19.spark广播变量 

Spark 在程序运行前期,提前将需要广播的变量通知给所有的计算节点,计算节点会对需要广播的变量在计算之前进行下载操作并且将该变量缓存,该计算节点其他线程在使用到该变量的时候就不需要下载。

好处:

1、Driver每次分发任务的时候会把task和计算逻辑的变量发送给Executor。不使用广播变量,在每个Executor中有多少个task就有多少个Driver端变量副本。这样会导致消耗大量的内存导致严重的后果。

2、使用广播变量的好处,不需要每个task带上一份变量副本,而是变成每个节点的executor才一份副本。这样的话, 就可以让变量产生的副本大大减少;

原理:

广播变量,初始的时候,就在Drvier上有一份副本。task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中,尝试获取变量副本;如果本地没有,那么就从Driver远程拉取变量副本,并保存在本地的BlockManager中;此后这个executor上的task,都会直接使用本地的BlockManager中的副本。executor的BlockManager除了从driver上拉取,也可能从其他节点的BlockManager上拉取变量副本。

spark中的广播变量_郝少的博客-CSDN博客_spark 广播变量的使用

 20.源码


整个计算是通过逆推完成的,会通过finalRDD创建ResultStage,再找ResultStage的所有父Stage,ResultStage的所有父Stage都是ShuffleMapStage,当stage没有的时候会做任务的提交,每个ShuffleMapStage会根据自己的分区数映射成多个ShuffleMapTask集合,如果是ResultStage会映射成ResultTask集合,在做stage划分的时候会根据RDD之间的依赖关系,依赖关系分为ShuffleDependency,NarrowDependency,通过DAGScheduler将任务的阶段划分好再通过TaskScheduler将任务集借助SchedulerBackend提交,中间DAGScheduler做任务划分时将任务封装成jobsubmiter类,递交给DAGSchedulerEventProcessLoop队列

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值